LAKE PONTCHARTRAIN, LA. AND VICINITY LAKE PONTCHARTRAIN HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

VOLUME I

DEPARTMENT OF THE ARMY

NEW ORLEANS DISTRICT, CORPS OF ENGINEERS

NEW ORLEANS, LOUISIANA

AUGUST 1988

SERIAL NO. 53

DEPARTMENT OF THE ARMY

NEW ORLEANS DISTRICT, CORPS OF ENGINEERS P.O. BOX 60267

NEW ORLEANS, LOUISIANA 70160-0267

REPLY TO
ATTENTION OF:
CELMN-ED-SP

11 August 1988

MEMORANDUM FOR: Commander, Lower Mississippi Valley Division, ATTN: CELMW-ED-TD

SUBJECT: Lake Pontchartrain, Louisiana and Vicinity, High Level Plan, Design Memorandum No. 19 - General Design, Orleans Avenue Outfall Canal

- 1. The subject design memorandum is submitted for review and approval, and has been prepared generally in accordance with the provisions of ER 1110-2-1150, dated November 1984.
- 2. A summary of the current status of the Clean Water Act, endangered species, EIS, and cultural resources investigations is as follows:
- a. There is no deposition of dredged fill material into waters of the U.S. associated with the tentatively selected plan; therefore, no Section 404(b)(1) Evaluation is required. However, if the alternative plan of parallel protection is chosen, a Section 404(b)(1) Evaluation must be prepared and an application for a Water Quality Certificate must be made.
- b. Based on studies and investigations at this stage of design, the proposed action is not likely to jeopardize the continued existence of any endangered species or result in the destruction or adverse modification of the critical habitats of such species.
- c. A final EIS for the barrier plan for the subject project was filed with CEQ on 17 January 1975. A final supplement to this EIS was filed with EPA on 7 December 1984. An Environmental Assessment addressing both the butterfly valve and parallel protection alternatives was mailed to the public in July 1988.
- d. The project area includes an existing levee corridor on Post-1930 reclaimed land and the artificial channel of the Orleans Avenue Canal. No cultural resources are recorded in the vicinity of the proposed work.

CELMN-ED-SP SUBJECT: Lake Pontchartrain, Louisiana and Vicinity, High Level Plan, Design Memorandum No. 19 - General Design, Orleans Avenue Outfall Canal

- 3. In accordance with LMVED-TS letter dated 5 February 1981, this report has been reviewed by the District Security Officer. There were no comments to be incorporated in the report.
- 4. This report was scheduled to be submitted to LMVD by 31 July 1988. This delay will not cause a delay in the start of construction.
- 5. Approval of the report and project plan as a basis for establishing the Federal cost-sharing for the parallel protection plan is recommended. Approval of local interests design plans for incorporation in the Lake Pontchartrain Louisiana and Vicinity Hurricane Protection Project as a "betterment" is also recommended.

FOR THE COMMANDER:

Encl(16 cys, fwd sep)

FREDERIC M. CHATRY Chief, Engineering Division

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 - GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

TABLE OF CONTENTS VOLUME I

Paragraph	<u>Title</u>	Page
	PROJECT AUTHORIZATION	
1	Authority a. Public Law b. House Document c. BERH Recommendation	1 1 1 1
2	Purpose and Scope	1
3	Local Cooperation a. Flood Control Act of 1965 (Public Law 89-298) b. Water Resources Development Act of 1974 (Public Law 93-251)	3 3 4
4	Project Document Investigation	4
5 ,	Investigations Made Subsequent to Project Authorization	5
6.	Planned Future Investigations	. 5
7	Local Cooperation Requirements	6
8	Status of Local Cooperation	8
9	Views of Local Interests	8
10	LOCATION OF PROJECT AND TRIBUTARY AREA Project Location	8
	PROJECT PLAN	
4.4		0
11	General	9
12	Orleans Avenue Outfall Canal	9
13	Special Gate Requirements	10

Paragraph	<u>Title</u>	Page
	HYDROLOGY AND HYDRAULICS	
14	General	11
15	Design Elevations	11
16	Structure Analysis	14
	GEOLOGY	
17	General a. Scope b. Physiography and Topography c. Surface Investigation d. Subsurface Investigation e. Geophysical Investigation	15 15 15 15 15 15
18	Regional Geology a. Geologic Structure b. Faulting c. General Historical Geology and Geomorphology d. Regional Subsidence and Land Loss e. Earthquake History	15 15 19 19 22
	f. Groundwater g. Mineral Resources	22 24 24
19	Site Geology a. Site Location and Description b. Detailed Holocene Environmental	24 24
	Description c. Detailed Pleistocene Soil Descriptions d. Foundation Conditions e. Future Investigations	26 26 27 27
20	Conclusion	27
	FOUNDATION INVESTIGATION AND DESIGN	
21	General	28
22	Field Exploration	28
23	Laboratory Tests	28

Paragraph	Title	Page
24	Design Problems	29
25	Lateral Earth Pressure	29
26	Construction Dewatering and Hydrostatic Pressure Relief	30
27	Underseepage and Hydrostatic Pressure Relief a. Underseepage b. Hydrostatic Pressure Relife	30 30 30
28	Pile Foundations	31
29	Shear Stability a. Construction Slopes - Valve Structure b. Final Slopes	34 34 34
30	<pre>I-Walls a. Floodwalls b. Construction Floodwalls c. Approach Channel Wingwalls d. Braced Walls</pre>	36 36 36 37 37
31	T-Walls	37
32	Levee Settlements	37
	DESCRIPTION OF PROPOSED STRUCTURE AND IMPROVEMENTS	
33	Butterfly Valve Structure	38
34	Channel Closure	38
35	Floodwall	38
36	Butterfly Valve Operating Machinery	39
37	Gate Bearings	39
38	Drainage Facilities and Utilities Lines	40
39	Method of Construction	40
40	Cathodic Protection and Corrosion Control a. Cathodic Protection for Steel Sheet Piling b. Corrosion Control	40 40 40

Paragraph	Title	Page
	ACCESS ROADS	
41	Access Roads	40
	SOURCES OF CONSTRUCTION MATERIALS	
42	Sources of Construction Materials a. Concrete b. Other Materials	41 41 41
	RELOCATIONS	
43	General	42
	REAL ESTATE	
44	General	42
	COORDINATION WITH OTHER AGENCIES	
45	General	42
	AFFECTED ENVIRONMENT	
46	Introduction	43
47	Biological	43
48	Recreation	43
49	Cultural	44
50	Noise	44
	ENVIRONMENTAL EFFECTS	
51	Biological Impacts a. Butterfly Valve Alternative b. Parallel Protection Alternative	44 44 44
52	Endangered Species Impacts	45
53	Recreational Impacts a. Butterfly Valve Alternative b. Parallel Protection Alternative	45 45 45

Paragraph	<u>Title</u>	Page
54	Esthetic Impacts	45
	 a. Butterfly Valve Alternative Impacts 	45
	b. Parallel Protection Impacts	45
55	Culture Impacts	46
	a. Butterfly Valve Alternative	46
	b. Parallel Protection Alternative	46
56	Noise	46
	a. Butterfly Valve Alternative	46
	b. Parallel Protection Alternative	46
	COMPLIANCE WITH ENVIRONMENTAL LAWS	
57	General	47
	ALTERNATIVE PLANS CONSIDERED	
58	Introduction	48
	 a. Parallel Protection 	48
	<pre>b. Miscellaneous Gated Structures at Lakefront</pre>	51
	c. Gravity Drainage Structure with	
	Supplemental Pumping at Lakefront	52
	d. U-Shaped Reinforced Concrete Channel	53
	e. Replacement of Existing Pumping Station	
	With a New Station at Lakefront	53
59	Plan Selection	53
60	Need for Further Investigations	54
	ESTIMATE OF COST	
61	General	54
62	Comparison of Estimates	58
	SCHEDULE FOR DESIGN AND CONSTRUCTION	
63	Schedule for Design and Construction	59
	FEDERAL AND NON-FEDERAL COST BREAKDOWN	
64	Federal and Non-Federal Cost Breakdown	59
65	Funds Required by Fiscal Year	60

Paragraph	<u>Title</u>	Page
	OPERATION AND MAINTENANCE	
66	General	61
	ECONOMICS	
67	Economic Justification	61
	RECOMMENDATIONS	
68	Recommendations	61
	TABLES	
No.	Title	Page
1	Design Flowlines and Bridge Head Losses for High Lake Level (11.5 ft. NGVD)	13
2	Bridge Velocity (Ft./Sec.)	14
3	Corps of Engineers Borings	16
4	A-E Contract Borings	17
5	Piezometer - Locations and Elevations	32
6	Concrete Piles	33
7	Timber Piles	33
8	Steel H-Piles	33
9	Summary First Cost Parallel Protection (Oct 88 Price Levels)	49
10	Estimate of First Cost (Oct 88 Price Levels) Butterfly Control Valve Structure	55
11	Comparison of Estimates (Incremental Costs)	58
12	Federal and Non-Federal Cost Breakdown (Oct 88 Price Levels)	59
13	Federal and Non-Federal Funds Required	60

No.	<u>Title</u>
1	Index and Vicinity Map
2	Plan
3	Profile
4	General Plan
5	Excavation Plan
6	Typical Sections
7	Typical Sections
8	Typical Sections
9	Butterfly Valve Structure
10	Elevation and Section
. 11,	Butterfly Valve
12	Machinery Layout
12 –A	Alternative Alignment Parallel Protection
13	Soil and Geologic Profile
14	Soil and Geologic Profile
15	Soil and Geologic Profile
16	Soil and Geologic Profile
17	Soil and Geologic Profile
18	Soil and Geologic Profile
19	Soil and Geologic Profile
20	Undisturbed Boring No. 1-OUW
21	Undisturbed Boring No. 2-OUE
22	Undisturbed Boring No. 3-OUW

No •	<u>Title</u>
23	Undisturbed Boring No. 4-OUE
24	Undisturbed Boring No. 5-OUE
25	Undisturbed Boring No. 6-OUW
26	Undisturbed Boring No. 5-ULO
27	Undisturbed Boring No. 1-UOP
28	Undisturbed Boring No. 1-OUG
29	Undisturbed Boring No. 2-OUG
30	Undisturbed Boring No. 3-OUG
31	Undisturbed Boring No. 4-OUG
32	Undisturbed Boring No. 5-OUG
33	Undisturbed Boring No. 6-OUG
34	Undisturbed Boring No. 7-OUG
35	Undisturbed Boring No. 8-OUG
36	Undisturbed Boring Logs, Boring Nos. 1-OUW, 2-OUE, 8-OUG, 3-OUW, 4-OUE, 7-OUG, 5-OUE, 6-OUG, 5-OUG
37	General Type and Undisturbed Boring Logs, Boring Nos. 3-OUG, 1-OG, 4-OUG, 2-OG
38	General Type and Undisturbed Boring Logs, Boring Nos. 5-ULO, 1-UOP, 1-OP, 2-OP, 6-OUW, 1-OUG, 2-OUG
39	Soil Design Parameters
40	Soil Design Parameters
41	Floodgate Harrison Avenue, 12" Square Prestressed Concrete Piles, Pile Capacity Curves
42	Sta 22+80 To Sta 23+40 and Sta 29+40 to 50+00 Westside, 12" Square Prestressed Concrete Piles, Pile Capacity Curves

No •	<u>Title</u>
43	Floodgate, Filmore Avenue, 12" Square Prestressed Concrete Piles, Pile Capacity Curves
43A	Sta 50+00 To Sta 64+00 Westside "12 Square Prestressed Concrete Piles, Pile Capacity Curves
44	Floodgate, Robert E. Lee Boulevard, 12" Square Prestressed Concrete Piles, Pile Capacity Curves
44A	Sta 64+00 To Sta 90+50 Westside 12" Square Prestressed Concrete Pile Capacity Curves
45	Valve Structure Excavation, Steel HP14x73, Pile Capacity Curves
46	Valve Structure Timber Piles, Pile Capacity Curves
47	Valve Structure, 14" Square Prestressed Concrete Piles, Pile Capacity Curves
48	Protected Side Levee Stability Analysis-Sta. 0+00 to 36+50, East Side
49	Flood Side Levee Stability Analysis-Sta. 0+00 to 36+50, East Side
50	Protected Side Levee Stability Analysis-Sta. 36+50 to 50+00, East Side
51	Flood Side Levee Stability Analysis-Sta. 36+50 to 50+00, East Side
52	Protected Side Levee Stability Analysis-Sta. 50+00 to 64+00, East Side
53	Flood Side Levee Stability Analysis-Sta. 50+00 to 64+00, East Side
54	Protected Side Levee Stability Analysis-Sta. 64+00 to 90+50, East Side
55	Flood Side Levee Stability Analysis-Sta. 64+00 to 90+50, East Side
56	Flood Side Levee Stability Analysis-Sta. 90+50 to 104+00
57	Protected Side Levee Stability Analysis-Sta. 90+50 to 104+00

<u>No •</u>	Title
58	Flood Side Levee Stability Analysis-Sta. 104+00 to Lakefront Levee
59	Protected Side Levee Stability Analysis-Sta. 104+00 to Lakefront Levee
60	Protected Side Levee Stability Analysis-Sta. 0+00 to 22+80, Sta. 23+40 to 29+40, West Side
61	Flood Side Levee Stability Analysis-Sta. 0+00 to 22+80, Sta. 23+40 to 29+40, West Side
62	Deep Seated Stability Analysis-Sta. 29+40 to 50+00, West Side
63	Flood Side Stability Analysis-Sta. 29+40 to 50+00, West Side
64	Deep Seated Stability Analysis-Sta. 50+00 to 64+00, West Side
65	Deep Seated Stability Analysis-Sta. 64+00 to 90+50, West Side
65A	Temporary Cofferdam Stability Analysis-Sta 64+00 to 90+50, Westside
66	Lateral Earth Pressures
67	Dewatering System
68	Stability Analysis-Section A'-A'
69	Stability Analysis-Section B'-B'
70	Stability Analysis-Dredged Bypass Channel
71	Stability Analysis-Section C'-C'
72	Stability Analysis-Section D'-D'
73	Stability Analysis-Section C-C
74	Stability Analysis-Section D-D
75	Stability Analysis-Section F-F
76	Stability Analysis-Section G-G

No.	Title
77	Stability Analysis-Section H-H
78	Stability Analysis-Section I-I
79	Stability Analysis-Section J-J
80	Stability Analysis-Section K-K
81	Stability Analysis-Section L-L
82	Stability Analysis-Section M-M
83	I-Wall Analysis, Sta. 0+00 to 36+50, East Side
84	I-Wall Analysis, Sta. 2+44 to 29+40, West Side
85	I-Wall Analysis, Sta. 36+50 to 50+00, East Side
86	I-Wall Analysis, Sta. 50+00 to 64+00, East Side
87	I-Wall Analysis, Sta. 64+00 to 90+50, East Side
88	I-Wall Analysis, Sta. 90+50 to 104+00
89	I-Wall Analysis, Sta. 104+00 to 118+67 East and Sta. 118+87 West
89-A	I-Wall Analysis, Sta. 118+67 East and 118+87 West- Start of Transition
90	I-Wall Analysis, Sta. 124+67 East and 124+87 West-End of Transition
90-A	I-Wall Analysis, Sta. 124+67 to 128+67 East and Sta. 124+87 West
91	I-Wall Analysis, Valve Structure - East Closure Levee
92	I-Wall Analysis, Valve Structure - West Closure Levee
93	I-Wall Analysis, Temporary Cofferdam Sta. 64+00 to 90+50, West Side
94	I-Wall Analysis, Valve Structure Excavation
95	I-Wall Analysis, Valve Structure Excavation

No.	<u>Title</u>	
96	Braced Wall Analysis, Valve Structure Excavation	
97	Water Surface Profile No. 1	
98	Water Surface Profile No. 2	
99	Water Surface Profile No. 3	
100	Water Surface Profile No. 4	
101	Water Surface Profile No. 5	
A	Soil Boring Legend	
No.	FIGURES	Page
1	Mississippi River Deltas	21
2	Seismic Zone Map of the United States	23
	APPENDICES	
A	Environmental Assessment - FONSI	
В	Foundation And Materials Test Data	
С	Detailed Cost Estimates	
	Volume II - Parallel Protection Plan	
	Volume III - WES Model Test	

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO. 19 - GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

PROJECT AUTHORIZATION

1. Authority.

- a. <u>Public Law</u>. Public Law 298, 89th Congress, 1st Session, approved 27 October 1965, authorized the "Lake Pontchartrain, Louisiana, and Vicinity," hurricane protection project, substantially in accordance with the recommendations of the Chief of Engineers in House Document No. 231, 89th Congress, 1st Session, except that the recommendations of the Secretary of the Army in that document shall apply with respect to the Seabrook Lock feature of the project.
- House Document. The report of the Chief of Engineers dated 4 March 1964 printed in House Document No. 231, 89th Congress, 1st Session, submitted for transmission to Congress the report of the Board of Engineers for Rivers and Harbors, accompanied by the reports of the District and Division Engineers and the concurring report of the Mississippi River Commission for those areas under its jurisdiction. The report of the Board of Engineers for Rivers and Harbors stated: "For protection from hurricane flood levels, the reporting officers find that the most suitable plan would consist of a barrier extending generally along US Highway 90 from the easternmost levee to high ground east of the Rigolets, together with floodgates and a navigation lock in the Rigolets, and flood and navigation gates in Chef Menteur Pass; construction of a new lakeside levee in St. Charles Parish extending from the Bonnet Carre Spillway guide levee to and along the Jefferson Parish line; extension upward of the existing riprap slope protection along the Jefferson Parish levee; enlargement of the levee landward of the seawall along the 4.1 mile lakefront, and construction of a concrete-capped sheetpile wall along the levee west of the Inner Harbor Canal in New Orleans."
- c. <u>BERH Recommendation</u>. The report of the Chief of Engineers stated: "The Board (of Engineers of Rivers and Harbors) recommends authorization for construction essentially as planned by the reporting officers...I concur in the recommendation of the Board of Engineers for Rivers and Harbors."
- 2, <u>Purpose and Scope</u>. General design of the Lake Pontchartrain High Level Plan, Orleans Parish Lakefront Levee, was presented in Design Memorandum (DM) No. 13. The plan, assumed no barriers in the Chef Menteur and Rigolets Passes, recommended the least costly method of modifying the existing lakefront levee so that a high level of protection can be achieved. DM No. 13 did not cover the lakefront protection at the junction of three Orleans Parish outfall canals.

This memorandum presents the essential data, assumptions, criteria and computations for developing project plan, design and cost estimate for protection of the Orleans Avenue Outfall Canal. The protection of the London Avenue and Metairie Relief Canals will be addressed in future design memorandums. Scope of this memorandum involves developing a project plan which cost-effectively protects the Orleans Avenue Outfall Canal from Standard Project Hurricane, SPH, as authorized under the Public Law discussed in Paragraph 1. In conjunction with hurricane protection, the plan must also provide optimum conditions for storm drainage through the outfall canal into the lake.

Hurricane Protection for the Orleans Avenue Outfall Canal can be achieved by several alternative plan concepts. One plan concept is to provide fronting protection at/or near the lakefront end of the canal. The fronting protection structure would have specialized gates or valves that could be closed during a hurricane. A description of gate requirements is detailed in a subsequent paragraph. The structure and appurtenant floodwall would tie-in to the existing lakefront levee so that once closed, a continuous line of protection would be achieved. GDM Scope design details for the fronting protection plan are contained in volume I of this three volume series. A second plan concept requires upgrading the height of the existing 2.4 miles of parallel levees along both sides of the canal. This plan concept would also require that the bridges at Robert E. Lee Boulevard, Filmore Street and Harrison Avenue be modified or floodproofed since their respective deck elevations are below the grades required to achieve project protection. Means to achieve positive closure at Pumping Station No. 7, located at the southern end of the canal must also be incorporated into this plan. Plan details for the parallel protection plan are given in Volume II. As will be demonstrated in this report, the fronting protection plan is the most cost effective way to provide hurricane protection; can be designed to fully accommodate interior drainage; and will be the least disruptive method (from the stand point of construction) to protect the developed areas behind the levees. The local sponsor, the Orleans Levee Board, OLB, as well as the Sewerage and Water Board of New Orleans, SWBNO, have gone on record in support of the parallel protection plan. It is OLB's intention to construct the major portion of the parallel protection plan in accordance with Corps of Engineers criteria so that the work can be incorporated into the federal project. The balance of the work on the parallel protection plan will be funded from the 70% contribution from the federal share of the recommended project plan. Since the recommended Federal plan and the plan which the local sponsor wishes to build, parallel protection, are not the same plan, this GDM presents both plans to GDM scope.

At the same time design details for the fronting protection were being prepared by the New Orleans District, NOD, the parallel protection plan was also being formulated to GDM scope by the Architectural Engineering firm, Design Engineering Incorporated, DEI. DEI working under contract to the Orleans Levee Board prepared the Design Memorandum contained in Volume II. Close coordination between DEI and NOD was maintained to insure that designs for the parallel protection plan satisfied Corps of Engineers design criteria and also to insure that the

design could be incorporated into the federal project. The chain of correspondence between the District and DEI is also attached to the parallel protection DM to facilitate review. Not every aspect of the parallel protection plan has been fully worked out. The aforementioned correspondence stops as of April 1988 for purposes of printing this report. Two remaining areas where unresolved issues remain are on the west side of the canal from Stations 30+00 to 90+50 and north of Robert E. Lee Boulevard on the west bank of the canal, the plan presented by DEI call for construction of a new setback levee. NOD recommend an I-wall in existing levee. The few remaining issues will be resolved and results coordinated with IMVD. The estimated cost for the parallel protection plan was prepared first by confirming the quantity take-off from DEI's DM and then applying Corps of Engineers approved cost estimating procedures to the line items in the design. The procedure produces an estimated total cost for the parallel protection plan that is directly comparable to the other plans examined in this document.

Local Cooperation.

- a. Flood Control Act of 1965 (Public Law 89-298). The conditions of local cooperation pertinent to this supplement and as specified in the report of the Board of Engineers for Rivers and Harbors and concurred by the report of the Chief of Engineers are as follows:
- "... That the barrier plan for protection from hurricane floods of the shores of Lake Pontchartrain... be authorized for construction, ... Provided that prior to construction of each separable independent feature local interest furnish assurances satisfactory to the Secretary of the Army that they will, without cost to the United States:
- "(1) Provide all lands, easements, and rights-of-way, including borrow and spoil disposal areas, necessary for construction of the project;
- "(2) Accomplish all necessary alterations and relocations to roads, railroads, pipelines, cables, wharves, drainage structures, and other facilities made necessary by the construction works;
- "(3) Hold and save the United States free from damages due to the construction works;
- "(4) Bear 30 percent of the first cost, to consist of the fair market value of the items listed in subparagraphs (1) and (2) above and a cash contribution presently estimated at \$14,384,000 for the barrier plan...to be paid either in a lump sum prior to initiation of construction or in installments at least annually in proportion to the Federal appropriation prior to start of pertinent work items, in accordance with construction schedules as required by the Chief of Engineers, or, as a substitute for any part of the cash contribution, accomplish in accordance with approved construction schedules items of

work of equivalent value as determined by the Chief of Engineers, the final apportionment of costs to be made after actual costs and values have been determined:

- "(5) For the barrier plan, provide an additional cash contribution equivalent to the estimated capitalized value of operation and maintenance of the Rigolets navigation lock and channel to be undertaken by the United States, presently estimated at \$4,092,000, said amount to be paid either in a lump sum prior to initiation of construction of the barrier or in installments at least annually in proportion to the Federal appropriation for construction of the barrier;
- "(6) Provide all interior drainage and pumping plants required for reclamation and development of the protected areas;
- "(7) Maintain and operate all features of the works in accordance with regulations prescribed by the Secretary of the Army, including levees, floodgates, approach channels, drainage structures, drainage ditches or canals, floodwalls, seawalls, and stoplog structures, but excluding the Rigolets navigation lock and channel and the modified dual purpose Seabrook lock; and
- "(8) Acquire adequate easements or other interest in land to prevent encroachment on existing ponding areas unless substitute storage capacity or equivalent pumping capacity is provided promptly, provided that construction of any of the separable independent features of the plan may be undertaken independently of the others, whenever funds for that purpose are available and the prescribed local cooperation has been provided..."
- b. Water Resources Development Act of 1974 (Public Law 93-251). The local interest payment procedures outlined in the original conditions of local cooperation were modified in 1974 as follows: "The hurricane-flood protection project on Lake Pontchartrain, Louisiana, authorized by Section 204 of the Flood Control Act of 1965 (Public Law 89-298) is hereby modified to provide that non-Federal public bodies may agree to pay the unpaid balance of the cash payment due, with interest, in yearly installments. The yearly installments will be initiated when the Secretary determines that the project is complete, but in no case shall the initial installment be delayed more than ten years after the initiation of project construction. Each installment shall not be less than one twenty-fifth of the remaining unpaid balance plus interest on such balance, and the total of such installments shall be sufficient to achieve full payment, including interest, within twenty-five years of the initiation of project construction."
- 4. Project Document Investigations. Studies and investigations made in connection with the report on which authorization is based (House Document No. 231, 89th Congress, 1st Session) consisted of: research of information which was available from previous reports and existing projects in the area; extensive research in the history and records of hurricanes; damage and characteristics of hurricanes; extensive tidal

hydraulics investigations involving both office and model studies relating to the ecological impact of the project on Lakes Pontchartrain and Borgne; an economic survey; and survey scope design and cost studies. A public hearing was held in New Orleans on 13 March 1956 to determine the views of local interests.

- 5. Investigations Made Subsequent to Project Authorization. December 1977, a Federal court injunction was issued stopping construction of portions of the authorized project. The injunction was issued on the basis that the 1975 final Environmental Impact Statement (EIS) for the Lake Pontchartrain project was inadequate. The court directed, among other things, that the EIS be rectified to include adequate development and analysis of alternatives to the then ongoing proposed action. The results of these studies are contained in a three volume report entitled "Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection Project, Reevaluation Study", dated July 1984. reevaluation report recommended a "tentatively selected" high level plan of protection. This recommendation necessitated the preparation of the Orleans Parish Lakefront Levee West of IHNC report and this report as part of the Lake Pontchartrain Hurricane Protection Project, and the engineering and environmental studies discussed herein. Surveys and studies accomplished in preparing this GDM include the following:
- a. Alternative plan studies to develop alternative methods of construction required to optimize the proposed plan of protection;
 - b. Aerial and hydrographic surveys;
- c. Soils investigations including general and undisturbed type borings and associated laboratory investigations;
- d. Detailed design studies for alternative plans (including stability analysis);
- e. Tidal hydraulic studies required for establishing design grades for protective works based on the latest revised hurricane parameters furnished subsequent to project authorization by the National Weather Service;
 - f. Real Estate requirements;
- g. Detailed cost estimates for the proposed plan of protection as well as alternative plans and necessary utility relocations;
 - h. Environmental effects and evaluations; and
- i. A comprehensive public meeting for the "tentatively selected" high level plan held on 12 April 1984.

- 6. Planned Future Investigations. Upon satisfactory approval of this GDM, additional detailed Engineering Designs and Specifications will be prepared to support construction of this project feature. The recommended plan for the Orleans Avenue Outfall Canal hurricane protection is based on model testing study of the butterfly valve structure for London Outfall Canal outlet conditions. Although the principles of operation is the same, additional site specific model testing will have to be performed prior to the final design of the structure.
- 7. Local Cooperation Requirements. The conditions of local cooperation as specified in the authorizing laws are quoted in Paragraph 3. These conditions are applicable to the "Barrier Plan." A post authorization report for a "High Level Plan" recommended that assurances be amended. A complete list of local assurance items (as amended) are set forth as follows:
- a. Provide all lands, easements, and rights-of-way, including borrow and spoil-disposal areas necessary for construction, operation, and maintenance of the project; and
- b. Accomplish all necessary alterations and relocations to roads, railroads, pipelines, cables, wharves, drainage structures, and other facilities required by the construction of the project; and
- c. Hold and save the United States free from damages due to the construction works; and
- d. Bear 30 percent of the first cost, to consist of the fair market value of the items listed in subparagraphs (a) and (b) above and a cash contribution as presently estimated below, to be paid either in a lump sum prior to initiation of construction or in installments at least annually in proportion to the Federal appropriation prior to start of pertinent work items, in accordance with construction schedules as required by the Chief of Engineers, or, as a substitute for any part of the cash contribution, accomplish in accordance with approved construction schedules items of work of equivalent value as determined by the Chief of Engineers, the final apportionment of costs to be made after actual costs and values have been determined:

COST TO ORLEANS LEVEE DISTRICT (\$1,000,000's)

	FIRST COST 1/	LOCAL SHARE
ORLEANS LEVEE DISTRICT		
Citrus New Orleans East New Orleans	112.5 249.1	33.8 74.7
TOTAL	361.6	108.5

^{1/} Cost to complete after October 1979; October 1981 price levels.

e. This item has been deleted in full:

Provide an additional cash contribution equivalent to the estimated capitalized value of maintenance and operation of the Rigolets navigation lock and channel to be undertaken by the United States, presently estimated at \$3,816,000, the final determination to be made after construction is complete, said amount to be paid either in a lump sum prior to initiation of construction of the barrier or in installments at least annually in proportion to the Federal appropriation for construction of the barrier, and

- f. Provide all interior drainage and pumping plants required for reclamation and development of the protected areas; and
- g. Maintain and operate all features of the project in accordance with regulations prescribed by the Secretary of the Army, including levees, floodgates and approach channels, drainage structures, drainage ditches or canals, floodwalls, and stoplog structures (the remainder of this item is deleted); and
- h. Acquire adequate easements or other interest in land to prevent encroachment on existing ponding areas unless substitute storage capacity or equivalent pumping capacity is provided promptly; and
- i. Comply with the applicable provisions of the "Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970", Public Law 91-646; and
- j. Assume the responsibility to pay its share of the non-Federal project costs (the remainder of this item is deleted); and
- k. As a minimum, adhere to the payment schedule of the deferred payment plan, the apportionment of costs to be made as actual costs, values, and schedules are determined. The first payment under the deferred payment plan was due on 1 October 1976, with subsequent payments being due on 1 October of each succeeding year, up to and including 1 October 1990. Interest is charged on the unpaid balance during this period at the rate of 3.225 percent per annum. Cash contributions required subsequent to 30 September 1991 shall be computed in accordance with the basic 30 percent requirement stipulated in Section 204 of the Flood Control Act of 1965, Public Law 89-298 and House Document 231,89th Congress; and
- 1. Recognizes that subsections (b), (c), and (e) of Section 221 of the "Flood Control Act of 1970", Public Law 91-611 shall apply to paragraph (k) above. This agreement is subject to and shall become effective upon the approval of the Secretary of the Army; and
- m. Comply with Section 601 of Title VI of the Civil Rights Act of 1964, Public Law 88-352, that no person shall be excluded from participation in, denied the benefits of, or subjected to discrimination in connection with the Project on the grounds of race, creed, or national origin.

- 8. Status of Local Cooperation. New agreements of assurances covering all local cooperation requirements and a deferred payment plan for the Barrier Plan as authorized by Public Law 93-251 were executed by the Orleans Levee District on 30 March 1976. These assurances were accepted on behalf of the United States on 7 December 1977. Amended assurances for the High Level Plan were executed by the local sponsor on 29 May 1985, and accepted by the United States on 21 June 1985.
- 9. Views of Local Interests. The Orleans Levee District is the agency responsible for providing local interest assurances for this feature of the project. The plan presented herein was coordinated in detail with the Orleans Levee District engineering staff. Because OLB plans to construct the parallel protection plan it has been explained by NOD that upon higher authority approval of the Districts recommendation for fronting protection, the Federal participation will be limited to 70 percent of the first cost for fronting protection. The Levee District has indicated that they intend to construct parallel protection because even if fronting protection were built, they would be responsible for upgrading and maintaining the lateral levees. As discussed in paragraph 2, OLB plans to design and construct the parallel protection plan in accordance with Corps of Engineers design criteria so that the work can be incorporated into the Federal project. The Federal share of the cost for fronting protection will be applied to the parallel protection plan since fronting protection will not be necessary once parallel protection is in place. The intention and capability of this sponsor to provide the required non-Federal contribution for this feature have been amply demonstrated; in fact, considerable work on other completed features of the overall project has already been accomplished by this sponsor.

LOCATION OF PROJECT AND TRIBUTARY AREA

10. Project Location. The Orleans Parish Outfall canals segment of the Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project as shown on Plate 1 is located in southeastern Louisiana on the south side of Lake Pontchartrain in Orleans Parish. There are three outfall canals which transport storm water drainage from the major urbanized areas of Orleans Parish on the east bank of the Mississippi River. The Orleans Avenue Outfall Canal lies between the other two canals, 17th Street Canal and London Avenue Canal. The three canals run parallel to each other and are oriented in the north-south direction. Plate 1 shows the location of all three outfall canals.

PROJECT PLAN

11. General.

The need for project work at the three outfall canals in Orleans Parish was identified subsequent to the authorization of the Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project. The adoption of more severe hurricane parameters by the U.S. Weather Bureau necessitated upward revisions to the levee grades under that project.

The canals provide the main pumped drainage outfalls for the City of New Orleans. As can be seen on Plate 1, the pumping stations located on each of these canals are situated interior to the city some 2.5 to 3.1 miles from the shoreline of Lake Pontchartrain. Protection from tidal inundation via the lake-canal connection is presently achieved by locally constructed lateral parallel levees along each side of the canals. The existing lateral levees along each of the outfall canals do not meet the design height or design sectional stability required for the Lake Pontchartrain project under either the previously authorized Barrier Plan or the newly adjusted High Level Plan. Much of the New Orleans Area served by the Outfall Canals is well below sea level. Average topographic elevations in the drainage area are -6.0 ft. NGVD 1/ with some areas as low as -10.0 ft. NGVD. Although each of the outfall canals is similar in function and appearance, the hydrologic requirements for conveyance are quite different. This memorandum addresses the proposed hurricane plan of protection for the Orleans Avenue Outfall Canal only.

12. Orleans Avenue Outfall Canal.

The Orleans Avenue Canal extends about 2.4 miles from Pumping Station No. 7 in the vicinity of I-610 to its mouth at Lake Pontchartrain. The canal has average bottom and top widths of 100 feet and 160 feet, respectively. The average invert elevation varies from -6 ft NGVD at the pumping station to approximately -10.0 ft at Lake-shore Drive. Pumping Station No. 7, located at the south end of the canal, receives storm drainage from approximately 4,000 acres of highly urbanized drainage area and discharges into the canal through three branch pumps and three centrifugal pumps. The total existing nominal capacity of these pumps is 3,250 cfs. The Sewerage and Water Board of New Orleans expects in the future to increase the capacity to 4,550 cfs. The existing lateral parallel levees along Orleans Outfall Canal do not have sufficient elevation to protect the city from the Standard Project Hurricane (SPH).

The project plan presented in this memorandum recommends the construction of a butterfly control valve type gated structure at the lake end of the outfall canal between Robert E. Lee Blvd. and Lakeshore Drive. The structure primarily consists of four 28 ft x 16 ft gated

 $\underline{1}$ / elevations throughout this GDM are in feet referenced to National Geodetic Vertical Datum unless otherwise noted.

bays. The eccentrically pinned, vertical "butterfly" gates are designed for flow-induced operation and will automatically open or close as the direction of flow changes. No mechanical controls are required to operate the structure. As long as the direction of flow in the canal is towards the lake, gates will remain open. During hurricane event, when the lake elevation rises enough to reverse the direction of flow in the canal, the gates will automatically close. The existing levee in the vicinity of Lakeshore Drive will be raised to an elevation of 17.5 on the eastside and 18.0 on the westside to contain possible wave action during SPH. The levee will be transitioned from elevation 18.0 to 13.5 along the canal about 600 feet upstream from Lakeshore Drive.

13. Special Gate Requirements.

If fronting protection is to be the recommended Federal Plan, then the proposed structure must be designed so that it provides for maximum latitude or flexability to accommodate interior drainage. This can only be done if the gates on the structure are designed so that they can rapidly respond to the movement of water in the canal. Ideally, the gates should remain open as long as flow direction in the canal is from the pumping station to the lake. However if a condition should develop so that canal flow reverses and inflow from the lake occurs; then the gates should be equipped or specially designed to sense this condition and close. A capability to re-open when the lake stage drops below the canal stage is also an important priority for the gate system to have.

There are two separate approaches or ways that a gate system can be designed to achieve the above stated capability. A passive type of gate system using conventional gates i.e. vertical lift, sector or miter can be designed by equipping the gates with mechanical controls that are activated by a signal from gauges placed in the canal, is one way. A second design approach is to design an active type of gate system. An active gate system responds directly to the movement of water, much like the concept behind the conventional flap gated structure. In this GDM, the active gate system is called the vertically pinned butterfly valve. The butterfly valve also has a manual override which will allow the gates to be opened or closed simply by pushing a button. Volume III, contains the WES model study report on the vertically pinned butterfly valve which was conducted for the London Avenue Outfall Canal. For GDM scope designs the London Avenue model study adequately demonstrates that the valve concept is a functional alternative for the Orleans Avenue Outfall Canal. However, if the valve alternative were to be the plan ultimately constructed, instead of the parallel protection plan, a site specific model study for the Orleans Avenue Outfall Canal would be required.

It should be noted that the fronting protection plan as conceived herein would be operated so that the gates or valves would remain in their open position all of the time except when a storm approaches the Louisiana Coast. When a tropical storm or hurricane threatens, the gates would be placed in their active operational mode.

HYDROLOGY AND HYDRAULICS

14. General.

Design Memorandum No. 13, General Design, Orleans Parish Lakefront Levee West of I.H.N.C., presents the essential data, assumptions, and computations for developing the plan design. Tidal Hydraulic criteria applicable to the High Level Plan are provided in Appendix A of DM No. 13. Volume III of DM 19 contains the model study report on the butterfly control valve structures for the London Avenue Outfall Canal and is reproduced herein to demonstrate the feasibility of the valve concept.

Construction of the proposed levee/floodwall system and/or butterfly gates will not significantly affect existing surface drainage patterns. Minor modifications to existing area storm and sanitary utilities are required.

15. Design Elevations.

A hydraulic analysis was performed for the Orleans Avenue Outfall Canal to determine the required levee/floodwall height for hurricane protection. Water surface profiles were computed by use of the Computer Program HEC-2. For flow through the bridges, HEC-2's special bridge routine was used. Most of the bridges are seated much lower than the existing levee grades. Therefore, under the given sets of boundary conditions, pressure flow or both pressure and weir flow is a common occurrence. It was assumed bridge sites would be modified to contain flow within the levee cross sections by constructing road gates at each end of the bridges to form a continuous line of protection.

Information for the bridge cross sections was taken from available as-built plans. For some bridges, however, the low cord and top of roadway elevations were estimated from the levee profile and field observations. Channel cross section data was taken from the U.S. Army Corps of Engineers survey of 1971. More recent surveys taken in 1984 were compared with the 1971 survey and little or no change was noted. Values used for Manning's "n" were as follows:

n = 0.030 main channel

n = 0.035 channel overbank

Flow rates in the canal were based on nominal pump capacities. Sewerage and Water Board Pump Station No. 7 consists of two 14 ft diameter screw pumps, one 12 ft diameter screw pump, and three centrifugal pumps. The Sewerage and Water Board has proposed additional pumps that would increase the existing nominal capacity of 3,250 cfs by 40% to 4,550 cfs.

Plates 97 through 101 show profiles of the water surface elevations for various bridge conditions with both existing and future pump capacities. A design lake elevation of 11.5 ft NGVD was used. This is the stillwater surface elevation of Lake Pontchartrain for the Standard Project Hurricane. The computed water surface elevations at the upstream side of the bridges and the respective bridge head losses are shown in Table 1. The table shows that raising the bridge decks above the water surface profile would result in stage reductions of less than 1/2 foot. From a hydraulic standpoint, the head losses due to the bridge decks is not substantial for the high lake design case.

Consideration was also given to the alternative of floodproofing the bridges over the Orleans Avenue Outfall Canal by extending the bridge deck on either side of the roadway crossing to above the anticipated water surface elevation in the canal. This modification would prevent storm water from overflowing the bridge guardrails and would keep roadway crossings open to traffic during hurricane lake conditions. Profiles 3, 4, and 5 show the water surface profiles for various floodproofing alternatives. The bridge head losses for each of these alternatives are shown in Table 1. The additional head loss due to floodproofing is small. However, floodproofing of a bridge would cause all the flow to pass beneath the bridge deck, i.e., pressure flow. This would cause bridge velocities to increase as shown in the following Table 2.

TABLE 1

Design Flowlines and Bridge Head Losses for

High Lake Level (11.5 ft NGVD)

Bri	dge Conditions	Canal						
		Flow	Lakeshore	Robert E	Filmore	Harrison	-1-	Drainage
		cfs	Drive	Lee Blvd	Street	A venue	610	Pump #7
1.	Existing	3, 250	11.54	11 • 64	11.72	11.82	11.89	11.89
	Bridge Head Loss		0.04	0.07	0.03	0.05	0.00	e*
		4,550	11.57	11.75	11.90	12.08	12.21	12.21
	Bridge Head Loss	,,	0.07	0.11	0.06	0.10	0.00	
2.	All Bridges							
	Raised	3,250	11.50	11.54	11.59	11.64	11.71	11.71
	Bridge Head Loss		0.00	0.00	0.00	0.00	0.00	
		4,550	11.50	11.58	11.67	11.76	11.90	11.90
	Bridge Head Loss		0.00	0.00	0.00	0.00	0.00	
3.	Robert E. Lee							
	Floodproofed	3,250	11.54	11.68	11.76	11.86	11.93	11.93
	Bridge Head Loss		0.04	0.11	0.03	0.05	0.00	
		4,550	11.57	11.85	12.00	12.19	12.31	12.31
	Bridge Head Loss		0.07	0.21	0.06	0.10	0.00	
4.	Robert E. Lee,							
	Harrison							
	Floodproofed	3, 250	11.54	11.68	11.78	11.89	11.96	11.96
	Bridge Head Loss		0.11	0.11	0.05	0.07	0.00	
		4,550	11.57	11.85	12.04	12.26	12.38	12.38
	Bridge Head Loss		0.07	0.21	0.10	0.14	0.00	12323
5.	All Bridges							
-	Floodproofed	3, 250	11.54	11.69	11.78	11.90	11.97	
	Bridge Head Loss		0.04	0.11	0.05	0.07	0.00	
		4,550	11.58	11.87	12.06	12.28	12.40	12.40
	Bridge Head Loss		0.08	0.21	0.10	0.14	0.00	1

TABLE 2
BRIDGE VELOCITY (Ft./Sec.)

Bridge	Present Pump	o Capacity	Future Pump Capacity		
non-f	loodproofed	floodproofed	non-floodproofed	floodproofed	
Lakeshore Drive	1.5	1.6	2.0	2.2	
Robert E. Lee Blvd	. 1.9	2.4	2.6	3.3	
Filmore Avenue	1.6	1.8	2.1	2.5	
Harrison Avenue	1.9	2.0	2.5	2.8	

The increase in channel velocities due to floodproofing is not substantial and the values are within acceptable limits. Also, the inundation caused by floodproofing would reduce the effective weight of the bridge by about 0.6 of its weight in air and any air entrapped under the deck would further reduce the effective weight. The horizontal forces due to the unbalanced hydrostatic pressure, plus the energy from the moving mass of water would increase the dynamic forces acting on the bridge deck. The likelihood of the structure being lifted or pushed off the abutments and piers is greatly increased. Therefore, any bridge being floodproofed would have to be anchored to prevent this.

16. Structure Analysis.

The U.S. Army Engineers Waterways Experiment Station (WES) conducted a hydraulic model study on the use of butterfly gates on the London Avenue Outfall Canal. The purpose of the study was to evaluate the proposed location for the structure and develop a gate and canal design that would permit automatic flow-induced opening or closing of the gates when subjected respectively to pumped flows or hurricane surges. Tests were also conducted to evaluate the torque acting on vertical gate shafts when subjected to various flows, wave conditions and gate openings.

The model tests for the head losses across the structure showed that these losses were small and considered insignificant for hydraulic analysis. A copy of the hydraulic model study is attached as Volume III.

17. General.

- a. Scope. The geology presented herein is based on regional and local surface and subsurface information. It is intended to present a general project overview of the pertinent geologic data and interpretation.
- b. Physiography and Topography. The project site is located within the Central Gulf Coastal Plain region on the flanks of the Mississippi River Deltaic Plain and normal to the Lake Pontchartrain shoreline in northern Orleans Parish. Pronounced physiographic features of the area are lakes, shorelines, canals, an abandoned Mississippi River delta, the Mississippi River, beach ridges, marshes, and swamps. Ground surface elevations in the vicinity vary from approximately -10.0 feet NGVD to +20.0 feet NGVD along the crown of the mainline Mississippi River levees.
- c. Surface Investigation. Aerial photographs, topographic maps, and geologic maps were used in conjunction with published literature to define the geologic setting of the project area.
- d. Subsurface Investigation. Four 1-7/8 inch I.D. general type borings and twelve 5-inch undisturbed borings were drilled, sampled, and classified by Corps of Engineers personnel for this project. In addition, a total of four 5-inch borings were drilled and sampled by an A-E contractor and classified by Corps of Engineer personnel. An additional 52 A-E contract borings were reviewed for geologic analysis. Twelve Corps of Engineer borings, all 4 of the joint venture borings, and the fifty two A-E contract borings are presented on the geologic profiles (Plates 13 through 19) in order that the most geologically complete interpretation is rendered. The A-E contract boring symbols were modified to accommodate the Unified Soil Classification System. Individual boring depths varied from 28.5 feet to 123.0 feet and generally encountered artificial fill, Holocene soils, and the Pleistocene horizon. The boring data, used in conjunction with other available data, was the primary source for site specific geologic foundation interpretations. (Refer to Table 3 for Corps of Engineer and Table 4 for A-E contract boring summary) .
- e. Geophysical Investigation. No geophysical methods were used at the project site. Present refractive methods would not have delineated the various Holocene environments.

18. Regional Geology.

a. Geologic Structure. The project site is located within the Gulf Coastal Plain province. The province extends east to west from Georgia to Texas and north to south from southern Illinois to the Gulf of Mexico continental shelf. The central portion of the province is

TABLE 3

CORPS OF ENGINEERS BORINGS

				DEPTH	DATE
BORING NO.	STA.	OFFSET	ELE V.	SAMPLED	COMPLETED
1 - 00W	2+13	PS TOE W. LEV.	1.9	28.5	22 OCT 70
2-OUE	2+70	PS TOE E.LEV.	-0.3	79.5	16 OCT 70
8-OUG **	18+48	C/L W. LEV.	5.8	40.0	23 OCT 70
4-OUE	40+53	PS TOE E.LEV.	0.9	74.5	14 OCT 70
3-OUW	40+53	C/L W. LEV.	6.9	45.0	26 OCT 70
7-0UG**	6 1 +96	C/L E.LEV.	9.4	50.0	22 OCT 85
5-OUE	81+53	PS TOE E. LEV.	-1.0	75.5	19 OCT 70
6-OUG**	87+63	PS TOE E.LEV	-1.5	40.0	21 OCT 85
5-OUG **	87+63	C/L E.LEV.	9.2	50.0	22 OCT 85
2-0G*	101+75	C/L CANAL	- 5. 5	107.5	24 JUL 84
4-oug	103+75	C/L CANAL	-5.9	123.0	20 JUL 84
1-0G*	105+75	C/L CANAL	5. 3	108.0	12 JUL 84
3-OUG	111+87	50 'PS TOE W. LEV.	4.4	83.0	24 MAY 84
2-OUG	116+55	50 'PS TOE E.LEV.	3.7	82.5	15 MAY 84
1-0UG	116+55	C/L E.LEV.	9.0	82.5	16 MAY 84
6-0UW	119+57	25 'PS TOE W.LEV.	4.6	75.0	20 OCT 70
2-OP*	123+87	250 PS TOE W. LEV.	4.5	100.0	15 MAR 73
1-OP*	124+25	PS TOE E.LEV.	3.1	100.0	15 MAR 73
1-UOP	124+37	25 PS TOE W. LEV.	2.8	102.5	28 MAR 73
5-ULO	128+50	C/L E.LEV.	12.4	102.5	24 MAY 72

^{* 1-7/8&}quot; WIRELINE SAMPLES

^{**} SAMPLED BY A-E CONTRACTOR AND CLASSIFIED BY CORPS OF ENGINEERS

TABLE 4

A-E CONTRACT BORINGS

				DEPTH	DATE
BORING NO.	STA.	OFFSET	ELEV.	SAMPLED	COMPLETED
1	4+13	17' SW	9.94	100.0	17 SEPT 85
2	4+36	23 ' L	-1.70	50.0	21 SEPT 85
3	8+61	5 ' L	10.04	50.0	3 SEPT 85
4	9+00	23 ! L	-1.54	50.0	19 SEPT 85
5	14+26	4' L	9.88	50.0	16 SEPT 85
6	14+17	4' R	5.60	50.0	21 SEPT 85
7	18+22	5' L	9.98	50.0	31 AUG 85
8	18+67	24.5 L	-1.17	50.0	19 SEPT 85
9	24+57	4.5'L	9.83	50.0	16 SEPT 85
10	24+94	2' R	5.73	50∙ 0	21 SEPT 85
11	27+97	4' L	9.83	50.0	31 AUG 85
12	28+38	24 ' L	-1.27	50.0	19 SEPT 85
13	31+80	2' L	9.83	50.0	9 SEPT 85
14	31+68	28 ' L	-3.30	50.0	20 SEPT 85
15	37+54	2' L	9.81	50.0	31 AUG 85
16	37+58	24.5 L	-1.24	100.0	20 SEPT 85
17	41+65	2' L	9.81	50.0	16 SEPT 85
18	41+40	23 ' L	-1.60	50.0	20 SEPT 85
19	47+40	1.5'L	10.01	50.0	28 AUG 85
20	47+31	25' L	-1. 87	60.0	20 SEPT 85
21	53+20	0.5'L	9.71	50.0	16 SEPT 85
22	51+80	25' L	-4.41	50.0	20 SEPT 85
23	57+97	1' R	9.56	50.0	27 SEPT 85
24	58+44	25' L	-4.27	50.0	21 SEPT 85
25	62+88	1.5'R	9.61	100.0	12 SEPT 85
26	62+73	25' L	-4.27	50.0	20 SEPT 85
27	64+27	5' R	9.06	50.0	31 AUG 85
28	67+33	25' L	-5.48	50.0	19 SEPT 85
29	72+40	5' R	9.81	50.0	27 AUG 85
30	72+22	25' L	~5. 29	50.0	19 SEPT 85
31	77+27	5.5'R	9.71	50.0	31 AUG 85
32	77+24	25' L	-6.21	50.0	19 SEPT 85
33	82+90	6' R	9.26	50.0	2 AUG 85
34	83+01	3.5'L	4.70	50.0	17 SEPT 85
35	87+34	4.5'R	9.16	50.0	31 AUG 85
36	87+26	25 ' L	-5.20	50.0	18 SEPT 85
37	93+97	1.5'L	9.04	50.0	1 AUG 85
38	93+67	C/L	8.89	100.0	6 SEPT 85
39	98+52	11' R	9. 14	50.0	1 AUG 85
40	98+08	1.5 'R	9.69	50.0	5 SEPT 85
41	103+37	C/L	9.22	50.0	31 AUG 85
42	103+37	C/L	9.49	50.0	5 SEPT 85
43	107+69	3 L	9.42	50.0	31 JULY 85
44	106+80	C/L	9.90	50.0	12 SEPT 85
45	113+33	C/L	9.67	50.0	31 AUG 85

TABLE 4

A-E CONTRACT BORINGS
(CONT.)

BORING NO.	STA.	OFFSET	ELEV.	DEPTH SAMPLED	DATE COMPLETED
46	114+05	8' R	9.45	50.0	4 SEPT 85
47	118+76	2' R	9.19	50.0	31 JULY 85
48	117+92	C/L	9.65	50.0	6 SEPT 85
49	123+77	C/L	10.39	50.0	31 AUG 85
50	123+03	C/L	10.09	50.0	4 SEPT 85
51	128+82	1.5 L	12.89	50.0	30 JULY 85
52	128+20	4 ' R	8.59	50.0	6 SEPT 85

known as the Mississippi Embayment. The embayment is structurally oriented in a north-south direction with its axis passing locally through a point east of Houma, Louisiana.

The development of the embayment, an approximate 60 million year process, is continuous with the influx of additional sediment. Tertiary and Quaternary sediment thicknesses presently exceed 40,000 feet near the gulf coastline. This tremendous accumulation of sediments has caused a downwarping of the underlying basement rock resulting in the deformation and faulting of that sediment. Such massive accumulations are also associated with higher than normal Quaternary sediment consolidations and stresses that also produces both regional and local faults and structural deformations. Salt domes, diapiric formations of deeply seated Triassic-Jurassic evaporitic deposits, have also produced a locally faulted and massively deformed subsurface. These surficial extrusions or near surficial intrusions usually result in large easily mined halite and gypsum deposits. Diapiric movement appears to be pre-Quaternary in age.

- b. Faulting. A series of subsurface normal faults trending NE to SW and NW to SE are common in the area, but lack surface expression in the immediate project area. Most of these faults, classic down to the basin normal faults, are associated with the structural deformation of the sedimentary deposits, resulting from differential settlement of the subsiding sediments. Local faulting is somewhat responsible for the north shoreline orientation of Lake Pontchartrain. As previously stated, diapiric salt movement has caused local, generally radial type normal faulting.
- c. General Historical Geology and Geomorphology. The Holocene geologic history of the project area is directly related to the developing Mississippi River. The Mississippi River was formed during the Nebraskan stage, the first glacial advance of the Pleistocene Epoch. Sea level at that time was approximately 450 feet below present level due to the massive continental accumulations of ice. Subsequent to this first glacial period, three other major cycles of continental glacial advancement and recession occurred. These advances (waxing glaciation) and retreats (waning glaciation) have respectively resulted in periods of Mississippi River degradation (erosion or stream entrenchment) and aggradation (sediment deposition or channel filling).

During the last glacial cycle (Wisconsin), the lower Mississippi Embayment experienced a major Mississippi River entrenchment and stratigraphic incision of older Pleistocene and Tertiary deposits. The axis of this ancestral trench runs southeast to northwest between Baton Rouge and Lafayette and southward through a point near Houma, Louisiana. This orientation and location approximates the present central portion of the alluvial valley. During this period, the various tributaries of the Mississippi River also experienced entrenchment.

As glacial meltwaters returned to the oceanic basins, sea level rose and eventually stream gradients decreased. Decreased Mississippi River gradients and associated energy losses resulted in a massive

coarse grained alluviation of the entrenched valley. A braided river system resulted from these factors. Continued deposition of coarse grained material within the valley directly above the incised and formerly exposed Pleistocene surface resulted in a massive coarse grain blanket that is now referred to as the Holocene Substratum.

As stream gradients stabilized, grain size and sediment load decreased to such an extent that a single meandering channel, forerunner of the modern Mississippi, formed and the braiding characteristic ceased. A topstratum comprised of the finer grain size sediment and representing the various deltaic and fluvial environments developed within the Mississippi River floodplain.

Lateral and southern deltaic progradation resulted from a meandering Mississippi River. As a result of continued meandering, channel shifts, and massive deposition, a series of seven delta lobes were built gulfward. The seven major courses and associated delta lobes are presently identifiable in the region. The oldest course that can be detected is the Sale'-Cypremort (Maringouin), which is located along the present western boundary of the Mississippi River Deltaic Plain. The Sale'-Cypremort was active approximately 5,500 to 4,400 years before present. Concurrent with the abandonment of that course, the Mississippi River shifted eastward and occupied the Cocodrie course. It was during this period, approximately 4,600-3,500 years before present, that the first Holocene sediments of any significance were introduced into the study area. However, when the Mississippi River again shifted, this time to the west to occupy the Teche course (3,800 to 2,700 years before present), most of the residual Cocodrie Delta began to subside and was eventually destroyed by advancing gulf waters. Continuing to seek a shorter route to the gulf because of decreased channel gradient, the Mississippi River again shifted eastward to occupy the St. Bernard course. It was during this period, 2,800 to 1,700 years before present, that maximum Holocene deposition occurred in the study area, Lake Pontchartrain was encapsulated in its present form, and major physiographic features of the New Orleans area were developed. Mississippi River, shifting briefly to the west once again, occupied the Lafourche course from 1,900 to 1,300 years before present, and then finally shifted eastward to occupy the Plaquemine course (1,200 to 450 years before present) and the Balize or Modern course (450 years before present). (Refer to Figure 1, Deltaic Plain of the Mississippi River).

At present, the Mississippi River is discharging most of its sediments near or at the edge of the continental shelf and into deep gulfwaters. Thus, dissipation of sediment occurs over a relatively large geographical area. Construction of flood protection levees and major flood control projects restrains the river from migrating laterally and prevents the previously occurring annual flooding and associated sediment replenishment of the southeastern Louisiana floodplain.

Figure 1 Mississippi River deltas (From Kolb, et al, 1958)

When course abandonment occurs, deltaic accretion and sedimentation ceases. These processes are then replaced by the effects of subsidence and coastal erosion. This destructive phase is characterized by a series of environmental changes that includes landform deformation and shoreline retreat.

- d. Regional Subsidence and Land Loss. The project area lies in a region of active subsidence. Estimated project site rates vary from 0.33 to 0.49 foot per century (McFarlan, 1961 and Frazier, 1967). Regional subsidence rates vary from less than 0.5 foot to greater than 5.0 feet per century. Rates of 5.00 or more feet per century are found in the active delta to the south. The high subsidence and land loss rates result from five major processes. They are:
 - (1) Tectonic
 - (a) Sea level rise
 - (b) Basement sinking
 - (c) Faulting
 - (2) Consolidation or sediment compaction
 - (3) Human influences
 - (a) Water and hydrocarbon withdrawal
 - (b) Commercial activities
 - (c) Construction
 - (4) Vegetative modifications
 - (5) Erosion

Subsidence within the deltaic plain is a natural process and is expected to continue. The effects may be mitigated by controlled sediment replenishment within marsh environments and areas of prior marsh existence by such methods as breached levees, strategically placed drainage structures, and pumping stations.

Former studies indicate that the Pontchartrain Basin is experiencing serious shoreline retreat and land loss. Estimated shoreline retreat is 2 feet per year within Lake Maurepas and 5.4 feet per year within Lake Pontchartrain. Pontchartrain Basin calculations indicate land losses of 50 to 100 acres per year. However, site conditions indicate little, if any, erosion.

e. Earthquake History. The region is located in a stable area of low seismicity. The Mississippi River Deltaic Plain is encompassed by "Zone 1" on the Seismic Zone Map of the United States (Figure 2). This indicates that earthquake activity is a relatively rare event and usually less severe than average. Resulting damage to structures or levees in the immediate area can be expected to be minimal.

The only events that are known to have produced motion in the region were a series of New Madrid, Missouri earthquakes dated 1811 to 1812. These earthquakes were felt in the New Orleans area. However, no direct report or geologic evidence suggests that the zone of damage extended to the study site. A few minor quakes, having occurred in south Louisiana and southwest Texas, may have transmitted vibrations to the area. Calculated ground accelerations show that the greatest ground motions would likely occur from a major earthquake in the New Madrid Zone of the northern Mississippi Embayment. However, none of the calculated motions would exceed 0.05 q.

f. Groundwater. The shallow aquifers of the New Orleans area consist of discontinuous near-surface sands, such as former and present Mississippi River accretionary and distributary-channel deposits. These sands, because of quality and quantity constraints, are of little importance as aquifers. Where present, they are capable of supplying only small quantities of water (less than 50 gal/min).

Four deep freshwater aquifers in close proximity to the project area are: the Gramercy (historically referred to as the 200-foot sand), Norco (400-foot sand), Gonzales-New Orleans (700-foot sand), and the "1,200-foot" sand. The Gonzales-New Orleans aquifer, as determined by the Louisiana Geological Survey, is a good source of potable water within the New Orleans area and is presently being used in various cooling systems in the New Orleans metropolitan area. Stratigraphically equivalent sands upriver from New Orleans are without similar nomenclature and are historically referred to simply as older deltaic or pre-Holocene deposits. The project effect on the water quality or volume per local aquifer will be minimal.

g. <u>Mineral Resources</u>. Several hydrocarbon reservoirs are located in the region; however, none are presently in close proximity to the project area.

Any future levee construction will not preclude future oil and gas production or exploration, since directional drilling methods can be utilized.

Shell dredging within the confines of Lake Pontchartrain would not be affected unless borrow material is produced within the confines of the lake. Constraints on shell dredging may be enacted to prevent any activity near such a borrow site. Measures may then become necessary to mitigate possible loss of resource at this site.

No other major mineral resources are presently being developed in the area.

19. Site Geology.

a. Site Location and Description. The project is confined to northern Orleans Parish and that portion of the levee that parallels the Orleans Outfall Canal. This represents approximately 5 miles of levee

improvement. The project alignment is nearly normal to the regional geologic strike and traverses hydraulic fill, Holocene surficial marsh and subsurface beach, lacustrine, and marine deposits. A review of geologic profiles A-A' through D-D' (Plates 14 and 15) details geologic structure parallel to levee centerline. Profile AA-A'A' (Plate 17) details site conditions parallel to canal centerline and in the area of the proposed valve structure. Profile BB-B'B' and CC-C'C' (Plates 18 and 19) details geologic structure parallel to the valve structure axis. Subsurface elevations at the top of Pleistocene average -65 feet, but vary from approximately -40 to -85 feet.

Historically, the site stratigraphic sequence indicates a period of aerially exposed Pleistocene prior to an early Holocene marine transgression. Evidence of a gulfwater transgression and the subsequent development of the Pontchartrain Basin is present as a locally extensive basal bay-sound deposit. The clayey bay-sound deposit averages 20 feet in thickness and provides parenting material for the overlying Pine Island Beach trend. Estimated ages of the beach and bay-sound deposits are respectively 5,000 and 7,000 years.

Isolation of the embayment by the eastward prograding Cocodrie Delta (4,600 to 3,500 years before present) marked the end of marine conditions and the subsequent development of the lacustrine (lake) environment that exists today at the northern end of the project. Cocodrie aged deposits appear to be absent or obscured in the immediate area. This is possibly a result of two factors: (1) the deltaic material was eroded after abandonment and (2) the remaining material closely resembles the overlying lacustrine and further testing would be necessary to differentiate.

The later prograding St. Bernard Delta, 2,800-1,700 years ago, represented the last major period of active deltaic sedimentation within the area. The surficial marsh deposit genesis occurred during this period of time. A further description of the marsh is forthcoming. West of the project, marsh type deposits are found within the confines of Lake Pontchartrain. This may be further evidence of an expanding lake resulting from shoreline retreat.

The surficial marsh veneer, 5 to 15 feet thick throughout the project, represents the last stage of sedimentation in the area. Marsh type sediments are a result of annual Mississippi River overbank flooding and subsequent deposition of clay and silt size particles landward of the natural levees.

A review of borings in the vicinity of the artificial levee indicates that the additional overburden acts as a surcharge, in some instances consolidating the underlying marsh deposit to less than half the original thickness. Along the centerline of the artificial levee, the additional loading of soil has, to a lesser extent, similarly affected the underlying lacustrine.

Borings north of Robert E. Lee Blvd. reveal a massive surficial 10 to 20 feet thick blanket of hydraulic fill. This fill was placed behind the seawall during the later portion of the 1920's and the early 1930's. The fill is an excellent base for founding structures.

Borings within the confines of the lake reveal a slightly elevated Pleistocene surface and Holocene stratigraphic thinning. This may be indicative of one or a combination of the following: southern stratigraphic dip, deltaic loading, lower subsidence rates, and/or possible normal faulting. Lake Pontchartrain bay-sound deposits are thinner than the onshore equivalent.

b. Detailed Holocene Environmental Descriptions.

- 1. Bay-sound deposits are fine to coarse grain sediments bottoming bays and sounds. Average thicknesses are 20 feet in the project area. Reworking of the bottom portion by burrowing marine organisms produces a mottled appearance and inclusions of materials that are distinct from the surrounding sediment. Colors are typically light gray to gray.
- 2. Beach deposits are typically fine sands with large quantities of shells and shell fragments. The sands, generally well sorted with few clay lenses, are well suited for founding projects. Subsidence due to soil compaction is relatively minimal. The wedge shaped beach deposit, found throughout the project, thins from a 40 feet thickness at the southern end of the project to 10 feet near Lake Pontchartrain. The base elevation of the deposit remains a relatively constant -45 feet NGVD. This deposit is the remnant Pine Island Beach trend. The beach trend developed as sand was transported westerly from an area near Slidell.
- 3. Area lacustrine deposits are generally fine grained, thinly stratified, and average 10 feet in thickness. These characteristics are indicative of periodic deposition within a quiescent environment. Organic remains are more prominent in the upper 5 feet. The bottom one-third is characterized by relatively massive clays and an absence of organics.
- 4. The marsh deposits are highly compressible organic soils that typically cover 95 percent of the area. They grade vertically downward from peat to organic clays and silts. Generally, soil moistures exceed 100 percent, color varies from light grey to black, and consistences vary from very soft to medium.
- c. Detailed Pleistocene soil descriptions. The Pleistocene soils are a result of both deltaic and marine deposition. They represent both the regressive and transgressive phases and associated environments of an earlier Mississippi River deltaic system. The soils are therefore similar to the overlying Holocene. However, due to dessication, Pleistocene deposits are distinguished by a decrease in moisture contents, a stiffening of consistences, a decrease in sampling

penetration rates, an increase in oxidized sediments, and the presence of calcareous concretions.

- d. Foundation Conditions. Representative geologic site conditions are displayed on cross sections A-A' through D-D' (Plates 13 through 19). The massive beach deposit has greatly influenced the stratigraphic geometry of the area. The wedge-shaped subsurface beach has prevented an accumulation of deltaic type deposits at the southern end of the project; thus, this area is well suited for project improvement. However, as the beach thins northward toward Robert E. Lee Blvd., the foundation stability suffers due to a thickening surficial marsh and the development of the underlying clayey lacustrine deposit. The area north of Robert E. Lee Blvd. is relatively stable due to a general absence of marsh deposits and the placement of hydraulic fill. Potential for additional differential settlement, structural uplift, or need of construction dewatering and its effect on foundation conditions must be addressed.
- e. <u>Future Investigations</u>. Subsurface field investigations have been completed, and only occasional future investigations are anticipated if it becomes necessary to verify anomalous subsurface conditions.

20. Conclusion.

Current geologic information indicates generally favorable foundation conditions with regard to future construction. Further addition of fill may result in increased settlement rates, due to lacustrine and marsh soil compaction. Differential settlement may result in areas where organic contents are extremely high and relatively thick. Should future construction in the immediate project vicinity require dewatering, local settlement may occur due to oxidation of organics and consolidation of sediment.

FOUNDATION INVESTIGATION AND DESIGN

- 21. General. This section includes the soils investigations and foundation design for both the valve structure plan and the parallel protection plan. Both plans consist of I-walls, levees, and pile supported structures.
- Field Exploration. A total of 16 undisturbed 5 inch diameter soil borings was made in the project area. Borings 1-OUW, 2-OUE, 8-OUG, 4-OUE, 3-OUW, 7-OUG, 5-OUE, 5-OUG, and 6-OUG were made at the levee C/L or protected side levee toe for the parallel protection plan below Robert E. Lee Blvd. Borings 1-OUG, 2-OUG, 3-OUG, 1-UOP, 5-ULO, and 6-OUW were made above Robert E. Lee Blvd. for the parallel protection plan and valve structure plan. Boring 4-OUG was made in the C/L of the existing canal for the valve structure plan. The individual logs of these 16 undisturbed borings are shown on Plate 20 through 35. A total of 4 general type borings (1-OG, 2-OG, 1-OP, and 2-OP) were taken using a 1 7/8 inch ID core barrel or a 1 3/8 inch split spoon sampler. Borings 1-OG and 2-OG were made in the C/L of the existing canal. The locations of the undisturbed and general type borings are shown on Plate 12A. The boring logs are shown on Plates 36 through 38. Fifty two borings taken by A-E's for the Orleans Levee Board were used in conjunction with the COE borings in the foundation design. Twenty six of the borings were made with a 5 inch diameter Shelby Tube sampling barrel and twenty six of the borings were made with a 3 inch diameter Shelby Tube sampling barrel. The locations of borings taken by the A-E are shown in Figure 1 of Appendix A, Volume II. The boring logs are also contained in Appendix A of Volume II.

23. Laboratory Tests.

- a. <u>COE</u>. All samples obtained from the borings were visually classified. Water content determinations were made on all cohesive soil samples. Unconfined Compression (UC) Shear Tests, Atterberg and grain size analyses were made on selected samples of cohesive and granular soils, respectively. Water content determinations, (UC) test results and the D₁₀ determined from grain size analyses are shown adjacent to the logs on the boring profiles presented on Plates 20 through 35. Unconsolidated-Undrained (Q), Consolidated-Undrained (R), and Consolidated Drained (S) Shear Tests and Consolidation (C) Tests were made on representative soil samples obtained from the undisturbed borings. Liquid and plastic limits were obtained on the undisturbed cohesive test specimens. These tests are summarized on the boring logs shown on Plates 20 thru 35. The individual shear strength data sheets are shown in Appendix B.
- b. $\underline{A-E}$. Laboratory tests consisting of natural water content, unit weight, and either Unconfined Compression (UC), Unconsolidated Undrained (Q), one point or three point Shear Tests were performed by

A-E's on samples obtained from the A-E borings. Liquid and plastic limit tests were made on selected samples. Laboratory test results are shown in Appendix A, Volume II. (UC) tests, one point and three point (Q) tests in silts and sands were not plotted on the design shear strength profiles.

- c. Design shear strength parameters are shown on Plates 39 and $40 \cdot$
- 24. Design Problems. The principal problems to be resolved were as follows:
 - a. Structural excavation slopes, cantilever and braced sheetpile.
- b. Dewatering and hydrostatic pressure relief required to construct the structure in the dry.
- c. The stabilities of the final slopes of the closure levees and approach levees.
- d. Bearing pile lengths and subgrade reaction data for the valve structure, T-walls, and floodgates.
- e. Underseepage for the valve structure, pervious fill levees north of Robert E. Lee Blvd., T-walls and buried beach sand underlying the south end of the project.
- f. Limited R/W along the canal. On the east side of the canal, the R/W is limited by parks. On the west side of the canal above Robert E. Lee Blvd., the R/W is limited by buildings and park land. Below Robert E. Lee Blvd., the west levee toe had been degraded and replaced by a soil supported, reinforced concrete retaining wall and Orleans Avenue in 1965. The wall retains as much as 6 feet of earth fill.
 - g. Deep seated analyses and construction sequence of the T-walls.
- 25. Lateral Earth Pressure. Backfill adjacent to the structure on the west side will consist of a sand wedge to relieve lateral earth pressure. At rest coefficients $(k_{\rm O})$ of the backfill materials were used to determine the lateral earth pressure against the structure. For sand backfill, a lateral earth pressure coefficient of 0.5 was used for design. For clay backfill, a lateral earth pressure coefficient of 0.8 was used for design. At the east side of the structure, a shell closure with an at rest Coefficient of 0.4 was used for design. Total unit weights were used above water, and submerged unit weights below the water. The lateral earth pressure diagrams for the construction, operating, and dewatering cases are shown in cross sections on Plate 66.

26. Construction Dewatering and Hydrostatic Pressure Relief. To build the structure in the dry and insure stability of the structure excavation during construction, hydrostatic pressure relief will be provided in the pervious layers beneath the structure excavation area. Temporary piezometers will be installed in the pervious layers to monitor the pressure during dewatering and pressure relief period. The method of lowering the groundwater is to be left to the construction contractor with performance specifications being prepared on an "end-result" basis. The specifications will allow the use of wells, sumps, pumps, etc., as well as wellpoints. The dewatering system presented on Plate 67 is for cost estimating purposes and for use in evaluating the adequacy of the contractor's proposed hydrostatic pressure relief system.

27. Underseepage and Hydrostatic Pressure Relief.

a. Underseepage.

- 1. Valve Structure. A steel sheet pile cutoff will be used beneath the structure to provide protection against hazardous seepage. The location and penetration depth of the sheet pile cutoff wall are shown on Plate 6. Analyses were performed by Lane's Weighted Creep Ratio Method. The weighted creep distance was calculated as the sum of the vertical creep path distance plus one-third the horizontal creep distance. Lane's weighted creep ratio is the ratio of the weighted creep distance to the maximum differential head. The calculations are presented in Appendix B. The sheet pile cutoff of El. -25.0 NGVD under the structure, was extended into the west levee closure as recommended by EM 1110-2-1913. For the east levee closure, the sheet pile tip penetration from the I-wall stability analysis was extended to El. -25.0 NGVD due to the shell embankment section. Analyses were performed by Harr's Method.
- 2. <u>B/L Sta. 90+50 to the Lakefront Levee Eastside</u>. The sheet pile tip penetrations from the I-wall stability analysis were extended due to the silt and sand layers shown in the levee embankment sections. Analyses were performed by Flow Net.
- 3. B/L Sta. 29+40 to B/L Sta. 90+50 Westside. The tip penetration of the sheet pile cutoff wall beneath the T-walls were computed using Harr's Method. Analyses are shown in Appendix B.
- 4. B/L Sta. 2+44 to B/L Sta. 29+40 Westside. The tip penetration of the I-wall stability analysis checked. The analysis utilized Harr's Method and is shown in Appendix B.

b. Hydrostatic Pressure Relief.

1. B/L Sta. 90+50 to Lakefront Levee. Six piezometers were installed by the Orleans Levee Board's A-E in 1985 at the locations and

elevations shown in Table 5. Three of the piezometers are located at approximately Sta. 113+80. The piezometer readings are shown in Apppendix B. The gage and piezometric readings indicate that the pervious strata are connected to the Orleans Avenue Outfall Canal. A gradient was determined from the piezometric readings and used to compute a piezometric headline for a S.W.L. of 11.6 NGVD. The design piezometric headline was used in the stability analysis and uplift analysis. The stability analyses and uplift analyses indicated that a hydrostatic pressure relief system would not be required.

2. B/L Sta. 0+00 to B/L Sta. 50+00. The buried beach sand is highest between B/L Sta. 0+00 to B/L Sta. 50+00. The A-E installed three piezometers at approximately B/L Sta. 18+10. The piezometer readings are shown in Appendix B. The piezometer readings do not indicate that the buried beach sand is connected to the Orleans Avenue Outfall Canal. The piezometer readings indicate that the gradient slopes upward away from the canal, which may indicate a source in the lagoons or subsurface drainage system of City Park. Piezometers installed by the COE in 1970 and subsequent readings in 1971 also indicate that the buried beach sand is not connected to the Orleans Avenue Outfall Canal. The piezometers on the west side of the canal show that the hydraulic gradient from the east side continues to drop on the west side of the canal. The COE piezometers have become inoperative due to vandalism. Gage readings, piezometer readings, and locations are shown in Appendix B. A small test section in the 17th Street Outfall Canal was dredged to expose the buried beach sand to the canal. Piezometers were installed around the test section and readings were taken before and after dredging. There were no significant changes in the piezometer readings due to dredging. The data from the test section will be included in the 17th Street Outfall Canal GDM. Based upon a 100 year rainfall in City Park (El. +0.5) and hydraulic gradients from the piezometric readings, a design piezometric headline of E1. -3.0 was computed. The design piezometric headline was used in stability analysis between Sta. B/L 0+00 and Sta. 90+50.

28. Pile Foundations.

a. Ultimate compression and tension pile capacities versus tip elevations were developed for 12" and 14" square prestressed concrete piles, timber piles, and HP 14x73 steel H piles plates 41 through 47. Overburden stresses were limited so that the maximum resistance in the sands would be less than 2.0 ksf (Reference Seabrook Lock Design Memorandum No. 2-Detailed Design). Soil design parameters are shown on Plates 39 and 40. Values of cohesion, soil to pile frictional resistance, and lateral earth pressure coefficients for compression and tension used to compute pile capacities are shown in Tables 6, 7, and 8. The results of design pile loads versus tip elevations for cost estimating purposes are based on applying a factor of safety of 2.0 in

compression and tension. Pile capacity curves for the T-wall from B/L Sta. 22+40 to Sta. 23+40 and B/L Sta. 29+40 to Sta. 90+50, Plates 42, 43A and 44A neglect pile capacities above the critical slip plane. The HP 14x73 steel H pile capacity curves plate 45 neglect the pile capacity above the critical slip plane for the braced wall.

b. During construction, test piles will be driven and load tested in the project area. The results of pile load tests will be used to determine the length of the service piles.

TABLE 5

Piezometer	B/L Sta.	Location	Elevat	tion in E	eet NGVD
			Tip	Riser	Ground
P-1	18+08	9.3 (Levee C/L)	-21.3	11.7	9•7
P-2	18+11	33.4 (Levee Toe)	-17.5	2.5	0.5
P-3	18+21	191.1 (L.S. Levee C/L)	-19.0	1.0	-1.0
P-4	113+40	8.5 (Levee C/L)	-11.5	12.5	10.5
P-5	113+38	24.9 (Levee Toe)	- 9.6	7.4	5.4
P-6	113+46	196.8 (L.S. Levee C/L)	-11.6	5.4	3.4

TABLE 6
CONCRETE PILES

			Q-C	ase					S-C	ase		
	2	Kc	κ_{t}	N _C	N _q	8	0	K _C	κ_{t}	$N_{\mathbf{C}}$	$N_{\mathbf{q}}$	8
Clay	0°	1	0.7	9	1.0	0 °	23°	1	0.7	0	10.5	23°
Silt	15°	1	0.5	12.9	4.4	15°	30°	1	0.5	0	22.5	30°
Sand	33°	1.25	0.75	0	22.5	33°	33°	1.25	0.75	0	22.5	33°

TABLE 7
TIMBER PILES

<u>Q-Case</u>					S-Case							
	ø	K _C	κ_{t}	$N_{\mathbf{C}}$	p^{N}		ø	K _C	κ_{t}	N_C	$N_{\mathbf{q}}$	8
Clay	0°	1	0.7	9	1.0	0.	23°	1	0.7	0	10.5	23°
Silt	15.°	1	0.5	12.9	4.4	15°	30°	1	0.5	0	22.5	30°
Sand	33°	1.25	0.75	0	22.5	33°	33°	1.25	0.75	0	22.5	33°

TABLE 8

STEEL H-PILES

Q-Case

 β K_C K_t N_C N_q δ Clay 0° 1 0.7 9 1.0 0° Sand 33° 1.25 0.5 0 22.5 23°

- c. The settlement of the valve structure is estimated to be between 0 and 0.3 ft. based on consolidation in the first Pleistocene horizon. Differential settlement between 0 and 0.3 ft. will occur since the structure overlies the existing levee and the existing Orleans Outfall Canal.
- d. Subgrade moduli curves for estimating lateral restraint of the soil beneath the structure and pile supported T-walls are shown on Plates 41 through 47.

29. Shear Stability.

a. Construction Slopes - Valve Structure. All stability analysis into the excavation utilized piezometric headlines two to three feet below the ground surface. The excavation plan is shown on Plate 5. Stability was determined by the IMVD Method of Planes analysis and based upon a minimum factor of safety of 1.3 with respect to the design shear strength. The borings used to develop a design shear strength profile for the valve structure are shown on Plate 40. Only shear strength tests below elevation -53.0 NGVD were used from borings 6-OUW, 2-OUG, 5-ULO, 1-UOP, and 38. The borings used to develop a design shear strength line for B/L Sta. 90+50 to the lake are shown on Plate 40. A mass stability analysis was made for the centerline of the levee into the excavation as shown on Plate 71. Plates 68 and 72 show stability analyses relative to the excavation for the cantilever wall and braced wall for the 50 year hurricane stage of 9.0 NGVD. The stability analysis for the temporary protection levee of El. 10.0 NGVD into the excavation is shown on Plate 69. The elevation of the temporary levee is equal to the existing levee that will be degraded. Plate 70 shows the stability of the existing east levee into the dredged bypass channel. A construction low water elevation of -2.0 NGVD was used.

b. Final Slopes.

1. Structure and Vicinity. The stability of the approach levees, east closure levee, and west closure levee was determined by the method of planes analysis. These sections are shown in plan on Plate 4. The method of planes analysis was based on a minimum factor of safety of either 1.3 or 1.5 with respect to the (Q) design shear strengths. factor of safety of 1.5 applies to stability of the levees into the approach channels. The stability analysis for the west levee into the approach channel is shown on Plate 74. The approach levees north and south of the structure have the same embankment section, but the north approach levee has an I-wall in the embankment. Section C-C (Plate 73) shows a stability analysis of the north approach levee to the protected side. The stability analysis of the east and west closure levees were made for three different still water levels. Case 1 is for a high level lake elevation of 11.6 NGVD and a protected side canal water elevation of 2.0 NGVD. Case 2 is for a lake elevation of 7.0 NGVD and protected side canal water elevation of -5.0 NGVD. Case 3 is for a lower water elevation of -5.0 NGVD in the lake. Section I-I, (Plate 78)

is a stability analysis of the east closure levee for Case 1. Section J-J (Plate 79) is a stability analysis of the east closure levee for Case 2. Section K-K (Plate 80) is a stability analysis for the east levee closure for Case 3. The factor of safety of 1.3 applies to the stability of sections I-I, J-J, and K-K of the east levee closure. Section L-L (Plate 81) is a stability analysis for the east closure levee into the north approach channel for a Case 3 water elevation. Section M-M (Plate 82) is a stability analysis for the east closure levee into the south approach channel for Case 2 water elevation. Sections F-F and G-G on Plates 75 and 76 are stability analyses for the west closure levee into the south approach channel for Case 1 and Case 2 water elevations. Section H-H (Plate 77) shows a flood side stability analysis for the west closure levee into the north approach channel for a Case 3 water elevation.

Parallel Protection Plan. The stability of the levees along the Orleans Avenue Outfall Canal from the lakefront levees to the pumping station was determined by the method of planes analysis. The method of planes analysis was based on a minimum factor of safety of 1.3 with respect to the (O) design shear strengths. Plates 56 through 59 show flood side and protected side stability analyses for the existing levee from B/L Sta. 90+50 to the lakefront levees for both the east and west sides. Maximum levee sections with minimum ground elevations were used in the stability analyses. The clay layer between El. -8.0 NGVD to El. -20.0 NGVD from the shear strength design profile B/L Sta. 90+50 to the lake was replaced by a silt layer from B/L Sta. 104+00 to the lake. For B/L Sta. 0+00 to 90+50, shear strengths from the borings shown on the design shear strength plate were used to develop a design shear profile for the east levee centerline. The levee toe shear strength profile for the east and west side, B/L Sta. 0+00 to 90+50, was developed from the borings shown on the design shear strength profile. The shear strengths from borings 3-OUW, 8-OUG, 6, 10, and 34 were used to develop a shear strength profile for the west levee centerline, B/L Sta. 0+00 to 90+50. The west levee has a crown elevation varying between El. 4.5 NGVD and El. 6.0 NGVD, with no landside toe but an earth supported retaining wall, while the east levee crown elevation varied between El. 9.0 NGVD and El. 10.0 NGVD. Plates 48 through 55 present protected side and flood side stability analyses for I-wall in levee sections from B/L Sta. 0+00 to 90+50 east side. The existing levees were degraded to maintain the alignment of the existing flood protection. The section for B/L Sta. 64+00 to 90+50 East minimizes the amount of protected side fill. The section was requested by OLB to reduce the impact on the existing trees. Plates 60 and 61 show stability analyses for the I-wall in levee from B/L Sta. 2+44 to 29+40 west side except B/L Sta. 22+80 to 23+40 where a T-wall will be used. Orleans St. will be raised 1.5' at the toe of the levee and will slope down to the existing drainage ditch. At Sta. 22+80 to 23+40 Orleans St. elevation dropped significantly; therefore a T-wall was used. Plate 63, B/L Sta. 29+40 to Sta. 50+00 is the most critical floodside stability analysis for the T-walls from B/L Sta. 29+40 to Sta. 90+50. As shown on Plate 65A, a temporary sheetpile cofferdam will be driven to allow construction of the T-walls. The existing floodwall will be

degraded. The shear stability safety factor for the temporary sheetpile wall of 1.09 is considered sufficient since it is above the existing safety factor of 1.02 at EL. -33.0 for a 50-yr stage.

30. <u>I-Walls</u>. The required penetration of the steel sheet piling below ground surface was determined by the method of planes using an "S" shear strength of C=0 and 0=23° for the clay strata, and 0=30° and C=0 for silts. "Q" case design strengths are based on data shown on Plates 39 and 40. The factors of safety were applied to the design shear strengths as follows: 0 developed = arctan (tan 0 available/factor of safety). Using the resulting shear strengths, net lateral soil and water pressure diagrams were developed for movement toward each side of the sheet pile. With these pressure distributions, the summation of horizontal forces was equated to zero for various tip penetrations, and the overturning moments about the tip of the sheets were determined. The required depth of penetration to satisfy the stability criteria was determined where the summation of the moments was equal to zero. The following is sheetpile wall design criteria for hurricane protection levees:

Q-Case

F.S. = 1.5 with water to SWL

F.S. = 1.25 with water to SWL and waveload

F.S. = 1.0 with water to SWL + 2 ft. freeboard

S-Case

F.S. = 1.2 with water to SWL and waveload (if applicable)

If the penetration to head ratio is less than about 3:1, it is increased to 3:1 or to that required by the S-Case, $F \cdot S \cdot = 1 \cdot 5$, whichever results in the least penetration. The SWL is used to calculate head for penetration to head ratio.

- a. Floodwalls. Cantilever floodwalls will provide protection from B/L Sta. 0+00 to 90+50 east side. B/L Sta. 2+44 to 29+40 west side, and B/L Sta. 90+50 to the lakefront levees for both sides as shown on Plates 83 through 90A. The east and west levee closures for the valve structure will have cantilever floodwalls.
- b. Construction Floodwalls. A cantilever floodwall, Plates 94 and 95, will be used to transition from the braced wall to the existing levee embankment for the Cofferdam of the valve structure excavation. The cantilever floodwall shown on Plate 93 will provide temporary flood protection during construction of the T-walls from Sta. 29+40 to 90+50 west side. The same sheet pile will be reused; therefore, only the critical section between Sta. 64+00 and 90+50 was presented.

- c. Approach Channel Wingwalls. The cantilever walls are being placed in the channel slope with little or no material being retained as shown on plate 4. The cantilever walls were checked for stability which required little sheet pile tip penetration. The sheet piles were also checked for axial load capacity. The loads on the sheet pile are the concrete cap and on the east side the shell closure section. The elevations shown for the approach walls are based on a F.S. = 3.0 for pile capacity and for settlement. Sample calculations are shown in Appendix B.
- d. Braced Walls. A sheet pile braced wall with HP 14x73 steel H-pile anchorage (Plate 96) will provide flood protection for the excavation during construction of the structure. The natural ground next to the braced wall was lowered until the critical wedge for shear stability was at the wall. The sheet pile was extended through the bottom of the sand stratum to cutoff seepage.
- 31. T-Walls. A deep seated analysis utilizing a 1.3 factor of safety incorporated into the soil properties was performed for various potential failure surfaces beneath the T-walls. The analyses are shown on Plates 62, 64, and 66 for Sta. 29+40 to 90+50 west side. The summation of horizontal driving and resisting forces results in a value that is positive indicating that the load on the base must be equal to or greater than the load on the failure critical surface. The base of the T-walls was lowered until the at-rest force equaled or was greater than the positive unbalanced load on the critical failure surface. Lateral earth pressure diagrams for the T-walls are shown in Appendix B.
- 32. Levee Settlements. The following settlement estimates were based on theoretical analysis. The settlement of the east levee closure is estimated at 0.75 ft. The settlement at the east levee and valve structure interface is estimated at 0.25 ft. No consolidation is expected at the interface of the valve structure and west levee closure; however, shrinkage of the fully compacted backfill will result in 0.2 ft. of settlement. The estimated settlement of the west levee closure is 1 ft., which is primarily shrinkage of the backfill. The estimated settlement of the west approach levees to the valve structure is 2 ft. The west approach levees, with a 10 ft. crown width and net El. 10.0 NGVD, will be constructed over the existing construction levee of 4 ft. crown width and crown El. 10.0 NGVD. Sample calculations are shown in Appendix B.

33. Butterfly Valve Structure.

The proposed structure is based on the theory of a self-opening and closing, vertical, eccentrically pinned, butterfly gated structure. The butterfly gates would remain open during pumping of the interior drainage to the lake as long as the water level in the outfall canal exceeded that on the lake side of the structure (Plate 2) and close only when an incoming surge created a water level greater than that in the outfall canal on the pumping station side of the structure. This would permit continuous operation of the pumping station during a hurricane and reopening of the gates when the water level in the outfall canal downstream of the pumping station during a hurricane and reopening of the gates when the water level in the outfall canal downstream of the pumping station exceeded that on the lake side of the control structure. In the open (trimmed) position, the axis of each gate would be 12 degrees from the center line of each gate bay (Plate 9). During a surge flow, the eccentricity of the pin and the 12-degree offset (trim) would induce closing of the gates. The structure will provide (4) 28' x 16' openings with the sill at elevation -10.0.

The structure will consist essentially of four reinforced concrete gate bays supported by prestressed concrete piles, reinforced concrete approach aprons supported by untreated timber piles, and reinforced concrete capped sheet pile approach guide walls. The machinery house, which serves as part of the flood protection above elevation 8.5, will be located over the gates. Each gate bay will be provided with slots for needle beams and needles so that the gate bays can be dewatered for repair or painting of the valves. Protection against seepage under the structure will be provided by steel sheet pile cutoffs extending to EL. -25.0 under the structure as well as under each approach apron. See Plates 4 through 12 for details.

34. Channel Closure.

A combination shell embankment with I-wall will close the existing channel after completion of the structure. The shell embankment will have a 10-foot crown at elevation 7.5 I-wall will be constructed in the embankment crown to elevation 13.6 (net) (see Plates 4 and 6).

35. Floodwall.

I-type floodwalls will be provided at the following locations:

a. Sta. 0+00 West W/L to Sta. 20+84.51 West W/L. This floodwall is on the west bank of the Orleans Avenue Canal. At Sta. 0+00 W/L, the

new floodwall will tie into the new butterfly valve structure, and at Sta. 21+34.51 West W/L, it will tie into the existing Lakefront levee system (see Plates 2 and 3).

b. Sta. 2+07 East W/L to Sta. 24+95.17 East W/L. This floodwall follows the east bank of the Orleans Avenue Canal. At Sta. 2+07 East W/L, the new floodwall will tie into the new channel closure, and at Sta. 24+95.17 East W/L, it will tie into the existing Lakefront levee system (see Plates 2 and 3).

36. Butterfly Valve Operating Machinery.

- a. The machinery is designed for automatic and manual gate operation. In the automatic mode the gate is powered by the water hydraulic forces acting on the gate. In this mode the machinery acts as a dampner and shock absorber. Damping time will be field adjustable and accomplished with two hydraulic cylinders and a set of parallel adjustable nonpressure compensated and pressure compensated flow control valves. The nonpressure compensated flow control valves will provide for low pressure damping, below 200 psi, while the pressure compensating valves will provide for a control rate of damping above a system pressure of 200 psi.
- b. Manual operation of the gate is accomplished by powering the damping cylinders with a hydraulic power unit consisting of a hydraulic pump driven by an electric motor. In this manner approximately 417 to 513 Kip-Ft of torque can be imparted to the gate at the hinge for swinging the gate in either direction.
- c. Incorporated with the machinery is a spring. The spring is designed to assist the gate's closing forces generated by tidal flow from the lake into the canal by providing the gate with a preliminary closing torque of approximately 10 Kip-Ft when the gate is fully open and lesser torques as the gate moves towards the closed position. Because the opening forces due to drainage pumping is approximately 20 to 25 Kip-Ft the spring loading will not increase the head across the structure.

37. Gate Bearings.

The pintle will be a spherical bearing. The ball will be stainless steel and the bearing will be a high lead bronze such as ASTM B584-932. The top bearing or hinge will be a commercially available spherical roller bearing.

Plate 12 illustrates the machinery layout and the design of the hinge and pintle.

38. Drainage Facilities and Utility Lines.

There are no known drainage facilities or utility lines which will be affected by the project plan.

39. Method of Construction.

Construction will begin with the cantilever wall, the H pile braced wall and excavation of the bypass channel. The braced wall and cantilever wall will be constructed to a 50 year hurricane occurrence. The temporary dike will be constructed to the existing levee elevation. Spoil from the bypass channel will not be suitable for the temporary dike. The temporary dike will be constructed with excess material from the existing levee. The water within the wall area can be pumped down to El -5.0 NGVD without degrading the existing levee. For normal water conditions the water can be completely pumped out of the excavation and a dewatering system installed with excavation no lower than El -5.0 NGVD. Once the dewatering system is complete, excavation can proceed to El -15.0 NGVD. When the structure is completed, the east closure area within the braced wall will be excavated to El.-9.0 NGVD. The east closure I-wall will be driven between the structure and the braced wall. The braced wall and cantilever wall will be removed and the structure flooded. The remaining east closure section will be completed. The west closure levee will be completed and a temporary dike will be enlarged to a permanent levee section.

40. Cathodic Protection and Corrosion Control.

- a. Cathodic Protection for Steel Sheet Piling. All steel sheet piling will be bonded together to obtain electrical continuity and no corrosion protection measures will be provided. Cathodic protection can be installed in the future if the need arises. The sheet piles will be bonded together with a No. 6 reinforcing bar welded to the top of each pile. Flexible jumpers insulated with cross-linked polyethelene will be welded or brazed to adjacent sheet piles at the monolith joints 3 inches below the bottom of the concrete.
- b. Corrosion Control. The steel butterfly gates, corner plates, and all ferrous metal components which are not galvanized or stainless steel will be coated with a paint system consisting of a zinc rich epoxy primer and two coats of coal tar epoxy as required for corrosion control.

ACCESS ROADS

41. Access Roads. Vehicular access to the project site is available via many roads. Major thoroughfares which provide access to the project area are Lakeshore Drive and Robert E. Lee Boulevard, Marconi Boulevard on the east and General Haig on the west Traverse the site.

SOURCES OF CONSTRUCTION MATERIALS

42. Sources of Construction Materials.

a. Concrete.

1. Quantities and qualities.

	Structural Feature	Concrete Quantity	28 Day* Compressive Strength (psi)
Cast-in-Place	Stab Slabs	149 CY	2,500
	Other Items	4,843 CY	3,000
Precast Concrete	Piles, 14x14	22,200 LF	5,000
	Needles	-	3,000
	Needle Girders	-	3,000

*90 days if pozzolan used

- 2. Environmental Conditions. The concrete will not be subjected to any critical environmental or functional conditions.
- 3. Specification Requirements. Concrete construction will be specified using CW-03301, entitled "Cast-in-Place Structural Concrete" as a guide. Because of the nature of local aggregates, low alkali cementitious materials will be specified.
- 4. Commercial Ready Mix. Ready mix concrete meeting the requirements of this project and produced from batch plants meeting the guidelines of Cast-in-Place Structural Concrete (CW-03301) is available from several area ready mix companies.
- 5. <u>Sand and Gravel</u>. For this project, 3/4" and 1 1/2" or 1" nominal size aggregate will be used. Several area sources are capable of furnishing sand and/or gravel meeting ASTM quality and ASTM or Louisiana State Department of Transportation and Development gradation requirements.

b. Other Materials.

- 1. Rip-Rap. Stone is available from Corps approved sources in Arkansas, Missouri, Kentucky and Illinois for the 460 tons of rip-rap needed.
- 2. Shell. The 9,720 cubic yards of clam shell required can be provided by at least three local suppliers from adjacent Lake Pontchartrain.

RELOCATIONS

43. General. Under the authorizing law, local interests are responsible for the accomplishment of "...all necessary alterations and relocations to roads, railroads, pipelines, cables, wharves, drainage structures and other facilities made necessary by the construction work,...". There are no relocation requirements for the recommended butterfly valve plan.

REAL ESTATE REQUIREMENTS

44. General. All right-of-way needed to construct the project plan (fronting protection) are currently with in the existing Orleans Levee Board right-of-way and/or canal bottoms. No additional rights-of-way are required for the project plan. Since the Orleans Levee Board intends to build parallel protection plan, there will be additional rights-of-way needed. Acquisition of the addition rights-of-way are solely the responsibility of the Orleans Levee Board. Additional right-of-way requirements for the parallel protection plan are shown in Volume II.

COORDINATION WITH OTHER AGENCIES

45. General. As previously mentioned, the State of Louisiana, Department of Public Works, was appointed project coordinator for the State by the Governor of Louisiana. This agency has functioned to coordinate the needs, desires, and interests of state agencies and the Corps of Engineers. The Orleans Levee Board has provided the local cooperation for this feature of the hurricane protection project. The project plan presented herein will be used to establish the limits on cost sharing that the Federal Government will contribute towards construction of the parallel protection plan. This position has been explained to the engineering staff and representatives of the Levee Board. The Levee Boards funding for parallel protection has been based upon this cost sharing premise. The entire Lake Pontchartrain Hurricane Protection Project, including this project feature, has been discussed at numerous public and private meetings since its authorization. Such meetings have been held before regional, state, local, community, social, and educational organizations and have served generally to inform the public of the proposed works, to explain project functions, and to solicit the public coordination required for input to the Draft Supplemental Environmental Impact Statement (DSEIS) of the Lake Pontchartrain project as a whole. The Environmental Assessment (EA) for work on the Orleans Avenue Outfall Canal was provided to the Public in July 1988. A copy of the EA and the finding of no significant impacts (FONSI) is contained in Appendix A of this report.

AFFECTED ENVIRONMENT

46. Introduction.

The Orleans Canal runs from a pumping station near Interstate Highway 610 north to Lake Pontchartrain, a distance of 2.6 miles (see Plate 1). On the west side, the southern 1.8 miles are bounded by a levee topped with a concrete I-wall. The rest of the canal is bounded by earthen levees. Five bridges cross the canal. Orleans Avenue lies immediately adjacent to the levee right-of-way on the west; houses line the west side of the street. Marconi Drive parallels the canal on the east side, varying in distance from 150 feet to 500 feet from the levee. City Park property is immediately adjacent to the levee right-of-way on the east side. The Lakeshore Linear Park lies on both sides of the canal near the lake. Any borrow material required for the project would be obtained from Corps approved borrow sites in the Bonnet Carre Spillway.

47. Biological. The predominant vegetation on the levee is perennial grasses. Plants along the additional right-of-way include perennial grasses, herbs, ornamental shrubs, and pines, hackberries, and oaks. Due to regular mowing and human disturbance, the levee and surrounding terrestrial habitat does not provide significant wildlife habitat. There is some use of shrubs and trees by squirrels and songbirds. Some marsh grass lines the canal on the inside of the levee, covering approximately 2 acres. No threatened or endangered species or their critical habitat exist in the project area.

Water quality in the canal is poor. Dissolved oxygen is often low and the sediments contain traces of heavy metals and pesticides. Due to the poor water quality, the canal itself is of low value as aquatic habitat for fishery resources with species such as mosquito fish, mullet, gar and blue crabs predominant. The nearshore lake waters adjacent to the mouth of the canal provide habitat of moderate value for nursery and feeding of some estuarine dependent commercial and sport fish and shellfish. Benthos in the canal and nearshore lake consists of snails, Rangia clams and worms. This canal and nearshore area are used as feeding and resting areas by terns, gulls, egrets and occasional ducks.

48. Recreation. Recreational opportunities abound in the vicinity. As described above, 2/3 of the canal is bounded by green spaces with an esthetically pleasing mixture of grass, oaks, and pines. These trees add to the scenic beauty and provide shade for various recreational activities. The levee on the east side provides a green backdrop screening the view of the neighborhood beyond. The levee is used by joggers, walkers, bird-watchers, bicyclists, and some fishermen. The adjacent parks provide areas for field sport activities, picnicking, and

similar activities. The New Orleans Recreation Department operates the Gernon Brown Memorial Recreational Center adjacent to the levee at Harrison Avenue. This building is used for indoor games, recreation, and community activities.

- 49. <u>Cultural</u>. The project area includes an existing levee corridor on post-1930 reclaimed land and the artificial channel of the Orleans Avenue Canal. No cultural resources are recorded in the vicinity of the proposed work.
- 50. <u>Noise</u>. The background noise levels for the project area are approximated to range from 70 DBA in the project reaches located in residential areas on the west side south of Robert E. Lee Blvd. to 50 DBA in the quieter park like residential areas north of Robert E. Lee Blvd. and in City Park itself.

Edward Hayne Elementary School lies just west of the floodwall at Harrison Avenue.

ENVIRONMENTAL EFFECTS

51. Biological Impacts.

a. Butterfly Valve Alternative.

Structure placement and associated dredging would result in the loss of 3 acres of marginal benthic habitat through burial. Sessile and slow moving organisms such as mollusks would be lost. Fish are mobile enough to avoid impacts. Temporary displacement of other benthic and aquatic life would occur during cofferdam placement. Turbidity would increase, thus decreasing primary production and increasing oxygen demand. Resuspension of contaminated sediments in the water column could occur during construction.

The terrestrial impacts associated with the alternative are minimal and would involve the loss of approximately 0.13 acres of developed green space adjacent to the Orleans Avenue canal. Impacts resulting from the placement and handling of the dredged material removed from the canal bottom could potentially be sources of pollution if not contained in a properly secured site.

b. Parallel Protection Alternative.

Approximately 15 acres of low value wildlife habitat including 162 trees (45 of which are oaks) would be impacted by degrading, earth moving and shaping operations. The new levee would provide habitat

similar to the existing levee. The loss of mature trees would remove them from the ecosystem until the replacement trees mature. The new levee would provide habitat similar to one existing levee. Ten young oaks would be planted for every mature tree taken. Three young pines would replace each mature pine. In addition, approximately 2 acres of marsh grass and associated fishery habitat would be affected by degrading and upgrading the existing levee. Runoff during construction would slightly increase turbidity in the canal and the amount of airborne dust in the project area. Once the levee becomes vegetated, this impact would be eliminated.

52. Endangered Species Impacts.

No endangered or threatened species or their critical habitat would be impacted. Resource agencies have been contacted and concur.

53. Recreational Impacts.

a. Butterfly Valve Alternative.

Construction of the cofferdam and the structure would interrupt the minimal fishing and crabbing activities that occur in the bayou mouth. Noise during construction could disrupt bird-watching activities temporarily. The completed structure would have essentially no impact on recreation.

b. Parallel Protection Alternative.

All use of the five miles of earthen levee would be disrupted during construction. Once the protection is completed, there would be only 0.8 miles of earthen levee remaining (north of Robert E. Lee Blvd. and west of the canal). Once revegetated, this levee would support recreational activities similar to those occurring now, although on a levee that is about 5 feet higher than the present levee. The remainder would be floodwall. This floodwall would restrict pedestrian access to the water along most of the canal.

54. Esthetic Impacts

a. Butterfly Valve Alternative Impacts

Construction would temporarily increase noise and dust in the area. The completed structure would be relatively small and its esthetic impacts minimal.

b. Parallel Protection Impacts

Increasing the height of the levee, replacing levee with floodwall, and replacing floodwall would cause significant impacts to the esthetic

environment, including temporary noise and dust during construction. The loss of 162 trees would be an adverse impact until the replacement trees reach maturity. The soft, green visual effects of the earthen levee would be replaced by a more harsh visual barrier where the floodwalls are constructed. The harsh aspect could be softened by a textured surface treatment.

55. Cultural Impacts.

a. Butterfly Valve Alternative.

No impacts to significant cultural resources are anticipated and no cultural surveys are warranted.

b. Parallel Protection Alternative.

No impacts to significant cultural resources are anticipated. Therefore, no cultural resource survey is warranted.

56. Noise Impacts.

a. Butterfly Valve Alternative.

Installation of this structure would require several construction stages including pile driving, backfilling, slab construction and finishing work.

The greatest source of noise will be the pile driving activity. This construction activity would be performed in a non-continuous fashion for approximately 108, 10-hour days.

The greatest exposure would be encountered in the park adjacent to the construction. Exposure levels here would range from 95-105 DBA. This level of noise intrusion would interfere with passive recreation such as pleasure walking, picnicking, and bird watching, etc. In addition, some interference with oral communication could be expected near the construction site.

Residences within the project area would be exposed to piledriving noise levels which range from 77 dBA to 95 dBA for 108 days depending on the distance from the source. Approximately 4 homes would be exposed to 89-95 dBA, 11 homes to 83-89 dBA and 48 homes to 77-83 dBA. These are exterior noise levels and therefore interior noise exposure should be less.

Construction workers would have protective hearing devices. Since construction would take place during daylight hours, sleep interference should occur only for napping children and day sleepers. Noise affects many bodily functions (heart rate, respiratory volume, digestive secretions, hormonal secretions, etc.). If prolonged, the construction

noise levels could produce significant physiological damage. However, the relatively short duration of the noise should prevent such problems from occurring. The noise would definitely be highly annoying to inhabitants of the 63 residences within 400 feet of the actual work site. During the time the noise was higher than 85 dBA, it would be difficult to hold a conversation within the impacted house and recreational areas.

The remaining construction activities including slab construction (72 days) backfill operation (10 days) and finishing work (10 days) produce heightened noise levels ranging from 63-95 dBA. Four home would be exposed to 76-95 dBA, 11 homes to 70-89 dBA and 48 residences to 63-83 dBA. Again these are exterior noise levels, therefore the interior exposure to noise would be much less.

b. Parallel Protection Alternative.

This method of construction results in increases in noise levels produced from degrading and upgrading existing levees with higher floodwalls. The noise levels expected for the proposed construction would range from 95-105 dBA when measured 50 feet from the center of the noise source. One green space and portions of Haney Elementery School sould be exposed to noise levels ranging from 95-105 dBA. Approximately 168 residences would be exposed to noise levels ranging from 77-95 dBA. The level of noise with the majority of the houses (183) being exposed to 77-83 dBA. Ambient noise level for the area is 50-70 dBA. Therefore, during construction, the noise levels would increase a maximum of 35-45 dBA above ambient. This level of increase is not expected to significantly interfere with residential activity since most of the work will be done during daylight hours and exposure levels inside the homes would be further reduced.

COMPLIANCE WITH ENVIRONMENTAL LAWS

57. General.

An Environmental Assessment and unsigned FONSI will be prepared and circulated for public comment. Compliance with the Endangered Species Act has been achieved. Cultural compliance has been achieved.

If parallel protection is chosen, no Section 404(b)(1) Evaluation or CZM Consistency Determination would be necessary. If the butterfly valve alternative is chosen, both of these documents would need to be prepared.

ALTERNATIVE PLANS CONSIDERED

58. Introduction.

Several alternative plans are available to accomplish hurricane protection of the project area. The plans include the following:

a. <u>Parallel Protection</u>: The parallel protection plan includes floodwalls along each bank of the Orleans Avenue Canal from the Lakefront to the Pumping Station No. 7.

During the development of this design memorandum, this plan was considered in detail. This plan provides for upgrading the existing earthen levees along both sides of the outfall canal, to contain the SPH within the canal. This involves supplementing the existing levee with I-type and T-type floodwalls where feasible. The floodwall would tie into the existing lakefront levee at the lakefront and cross the canal in front of Pumping Station No. 7 at the south end of the canal.

There are five bridges across the canal between the lake and the pumping station. As part of the parallel protection plan, two sub-alternatives are available for hurricane protection at three of these bridge locations. The Interstate 610 bridge has sufficient height to clear the proposed parallel protection and Lakeshore Drive will remain outside of the levee system. Table 10 contains a summary of estimated cost for the parallel protection plan. Itemized costs are contained in Appendix C.

1. Roller-Type Floodgates: Provide roller-type steel floodgates at each end of the bridge crossings. These gates will tie into the proposed levees and/or floodwalls and will be closed during a hurricane event, thus shutting-off all traffic across the outfall canal.

Estimated cost of the parallel protection plan with roller-type floodgates at all four bridge locations is approximately \$1,000,000 less costly than the floodproofing plan. Costs for the road gates are detailed in Appendix C.

2. Bridge Floodproofing: Flood proofing of bridges across the outfall canal was investigated by the A-E firm of Design Engineering Inc., consultants for OLB. Based on the A-E's investigations, estimated cost for floodproofing the bridges, including contingencies, E&D, and S&A, is \$2,000,000. The comparative cost of the parallel protection plan, supplemented by the bridge floodproofing, is estimated at approximately \$42,500,000.

From a hydraulic standpoint, the option of floodproofing the bridges does not pose any problem, as the velocities through the bridge waterways are small (ranging from 1.5 to 3.3 ft/sec). The SWBNO favors the parallel protection plan with bridges modified to contain water in the canal. They maintain that this plan does not restrict or impair their ability to provide storm drainage during rainfall events concurrent with hurricane-related high elevations in the lake.

TABLE 9

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY

ORLEANS OUTFALL CANAL

SUMMARY FIRST COST PARALLEL PROTECTION

(OCT 88 Price Levels)

Cost			
Acct. No.	Item	Description	Amount
11	1	HARRISON AVE. TIE-IN STA. 36+14.85 TO STA. 37+14.85	\$ 32,483
	2	FILMORE AVE. TIE-IN STA. 63+77.7 TO STA. 64+51.7	26,982
	3	ROBERT E. LEE TIE-IN STA. 91+22.25 TO STA. 91+21.25	54,307
	4	REACH W-6 I-WALL STA. 91+15.16 TO STA. 91+82	30,354
	5	REACH W-6 I-WALL STA. 91+82 TO STA. 118+87	715,360
	6	REACH W-7 I-WALL STA. 118+87 TO STA. 124+87	215,751
	7	REACH E-6 I-WALL STA. 91+21.25 TO STA. 91+84.58	50,275
	8	REACH E-6 I-WALL STA. 91+84.58 TO STA. 118+67	963,748
	9	REACH E-7 I-WALL STA. 118+67 TO STA. 124+67	242,822
	10	REACH E-7 I-WALL STA. 124+67 TO STA. 128+67	173,743
	11	* REACH E-1 I-WALL STA. 2+42 TO STA. 3+65	49,869
	12	* REACH E-1 I-WALL STA. 3+65 TO STA. 36+14.85	883,829
	- 13	* REACH E-2 I-WALL 37+14.85 TO 44+04 & 44+74 TO 50+00	425,546
	14	* REACH E-3 I-WALL STA. 50+00 TO STA. 63+77.75	557,711
	15	* REACH E-4 I-WALL STA. 64+51.7 TO STA. 90+22.25	1,306,412
	16	* REACH W-1 I-WALL STA. 2+40 TO STA. 3+62	112,317
	17	* REACH W-1 I-WALL STA. 3+62 TO 22+80 & 23+40 TO 29+40	1,795,254
	18	* REACH E-2 T-WALL STA. 44+04 TO STA. 44+74	64,119
	19	* REACH W-1 T-WALL STA. 22+80 TO STA. 23+40	107,785
	20	* REACH W-2 T-WALL STA. 29+40 - 36+28.35 & 37+00.35 - 50+00	4,147,959
	21	* REACH W-4 T-WALL STA. 50+00 TO STA. 63+76.76	2,187,785

TABLE 9 (Cont'd) LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY ORLEANS OUTFALL CANAL SUMMARY FIRST COST PARALLEL PROTECTION (OCT 88 Price Levels)

Cost Acct. No.	Item	Description	Amount
11	22	* REACH W-5 T-WALL STA. 64+54.7 TO STA. 90+14.66	5,404,370
	23	PUMPING STATION T-WALL TIE-IN	100,709
	24	MOB AND DEMOB	60,000
	25	ENVIRONMENTAL PROTECTION	20,000
		SUBTOTAL	\$19,729,488
·	26	PUMPING STATION MODIFICATION	170,530
	27	PUMPING STATION COFFERDAM	258,500
	28	HARRISON AVENUE BRIDGE	385,073
	29	FILMORE AVENUE BRIDGE	436,090
	30	ROBERT E. LEE BRIDGE	531,874
02	31	UTILITY RELOCATIONS:	
		a) 30" DIA. WATERLINE AT STA. 44+50; \$5,000/SIDE	10,000
		b) O.H. POWERLINES AT STA. 4+50,37+20,50+50; \$3450 ea	10,350
01	32	LANDS AND DAMAGES ID NO. 80616 TOTAL	\$ 9,367,000
		SUBTOTAL, CONSTRUCTION 25% CONTINGENCIES	\$21,531,904 5,368,096
		TOTAL CONSTRUCTION (R)	26,900,000
		ENGINEERING & DESIGN (12%+)	3,200,000
		SUPERVISION & ADMIN. (10%+)	3,000,000
	-	OCT. '88 COST TOTAL COST (R)	\$42,500,000

^{*} Denotes Phase I and Phase II Construction

Regarding the option of providing roller-type floodgates versus floodproofing the bridges, OLB, along with the City Planning Commission, are totally opposed to closing-off the bridges during hurricane events (as envisioned with roller-type gates at bridge crossings). OLB's A-E has prepared designs for structural modifications of these bridges to contain flow within bridge waterways during hurricane events. A copy of an August 26, 1986 letter from the City of New Orleans Department of Streets insisting that the bridges over the canal "remain open at all times" is reproduced in Appendix A. DEI's response to the letter is also included in Appendix A.

The parallel protection plan is favored by the SWBNO. Although it has potential operational advantages over the butterfly valve structure, it is not recommended as the project plan. The cost associated with this plan is several times higher than the recommended project plan.

- b. <u>Miscellaneous Gated Structures at Lakefront</u>: The overall concept and principal of the gravity drainage structures with different types of gated structures is the same as the project plan. The following type of structures were considered:
- 1. Vertical Lift-Gated Structure: The feasibility of a lift-gated structure was investigated. The structure can be designed with monitoring equipment capable of detecting significant flow reversals at the structure and activating gate closure. Manual override capability can also be incorporated in the system. This alternative has an advantage over the project plan. There are several prototype facilities available whereby the design and reliability of such a structure does not need to be verified through model studies. Estimated cost for the vertical lift-gated structure is approximately \$9,300,000. From an aesthetic standpoint, this plan does not appear favorable. The structure would protrude well above the surrounding area and will appear to be out of harmony with adjacent lakefront appearance or character. Itemized cost estimates for the vertical lift-gated structure are given in Appendix C.

As discussed above, although an electronic monitoring and control system can be designed for automatic activation, the system would require constant maintenance and validation. The level of confidence of the automatic system operation under the dynamic conditions of a relatively rare standard project hurricane event, is questionable. Invariably, to be safe, a predetermined set of conditions for closing the gates will have to be established and agreed upon. SWBNO does not favor any such pre-arrangements. They are adamantly against any plan which has the potential to reduce their pumping capability. Due to a combination of several of these factors, this alternative is not recommended as the project plan.

2. <u>Sector-Gated Structure</u>: The possible use of a sector-gated structure was investigated. A monitoring and control mechanism, as discussed under the above option, can also be used for this type of structure. This type of structure is aesthetically less objectionable

than the vertical lift gates. No extensive superstructure is required for housing the gates and machinery. From a hydraulic standpoint, flow characteristics are good under a wide range of discharges. Head loss can be kept to a minimum. Considering the operation of these gates during hurricane events, the reliability of the automatic motoring and control mechanism is considered similar to the above alternate. Consequently, pre-determined gate closure conditions will have to be established and agreed upon, making this an undesirable alternative for SWBNO. Due to the relatively large size of each gate, potential failure of the control mechanism during gate closure operation could leave the city vulnerable to flooding. Rough order of magnitude cost of this alternate is \$14,900,000, significantly higher than the project plan. Based on these factors, this alternative is not recommended as the project plan. Itemized cost estimates for the sector-gated structure are contained in Appendix C.

3. <u>Vertical Lift-Gated Structure with Flap Valves</u>: The alternate of vertical lift gates with built-in flap valves was also considered.

In theory, this alternate appears feasible under the conditions when the lake level starts rising and the lift gates are closed prior to the lake reaching the SPH elevation. The flap valves could allow flow into the lake provided the effective head on the canal side is higher than the lake side. In theory, this could help improve the pumping efficiency at the south end; however, flap valves will be rendered inactive when the water elevation on the lake side reaches hurricane stage or is higher than the canal side elevation. At that point, functionally, this alternative would be identical to any of the gated structure alternates. It should be mentioned that the pump efficiency is somewhat "self-adjusting" by virtue of the fact that tailwater stages will go up as pump efficiency decreases. It appears that the "self-adjusting" aspect of the pumping system may make the reduction in pumping capacity a minor factor.

From an operational standpoint, this alternate is less attractive than the project plan. Under the project plan, as long as the lake side elevation is lower than the canal side without gate closure, flow should continue towards the lake, serving the same function as the flap valves. The remaining tangible factors for comparison between this alternate and the project plan are the reliability, aesthetics, local acceptability, O&M requirements, and costs. When compared with the project plan, this alternate is not favorable, and was not selected as the project plan.

C. Gravity Drainage Structure with Supplemental Pumping at Lakefront: Use of the floodgates at the lake end of the canal in conjunction with auxiliary low-head pumping station was considered to be a possible solution for land side flood protection after the gate closure. A rough order of magnitude cost of this alternate was also developed. The SWBNO has expressed strong opposition to this concept. Their prime concern is that from an operational standpoint, the "tuning" of discharge between existing pumping station and the auxiliary pump

would be hard to achieve. In the event that the stations should become out of synchronization, instabilities in flow could result in undulations in water surface profile, causing damage to the station. Due to strong local opposition, no further consideration was given.

- d. U-Shaped Reinforced Concrete Channel: This alternate would replace the existing canal with a U-shaped concrete channel, with no structure at the lake end. From a functional standpoint, this alternate is similar to the alternate of Parallel Protection, which was ruled out due to excessive cost. A rough order of magnitude cost of this alternate is well over \$100,000,000. Due to obvious cost reasons, this alternate was ruled out without further considerations.
- e. Replacement of Existing Pumping Station with a New Station at Lakefront: Estimated first cost of this alternate is approximately \$160,000,000. Due to reasons cited above, this alternate was ruled out in the initial phase of this report development.

59. Plan Selection.

The task of providing hurricane protection for the outfall canals present some unique problems. On the one hand, the highly urbanized area to be protected is low-lying and must depend on the pumping stations for storm drainage for all rainfall events. On the other hand, hurricane protection demands full closure of the lakefront side of the canal during the standard project hurricane event. In the process of plan formulation, practically all conceivable alternatives were considered. Fronting protection which is designed to accommodate interior drainage, fully meets the mandate of the Project Authorization. With the line of hurricane protection established at or near the lakefront, the levees on the protected side of the structure are considered to be interior drainage features. Any existing limitations which the interior drainage system currently has will not be affected with construction of the proposed fronting protection. limitations referred to here concern the capability of the Pumping Station No. 7 to pump against high lake stages, i.e. reduced pump efficiency, and inadequate freeboard of the existing lateral levees. Sewerage and Water Board of New Orleans has indicated to the New Orleans District that one of their long range goals is to achieve a pumping capacity, capable of evacuating a 5 inch - 5 hour rainfall. This approximates a 3 year rainfall event for the New Orleans area. Also, this pumping objective is for a normal lake stage and not for a SPH event which has a recurrence interval of about once in 300 years. The management of storm drainage is entirely SWBNO's responsibility. Consequently the focus of plan formulation process was centered around alternatives which appear cost-effective from a hurricane protection standpoint while offering optimum physical conditions for an efficient operation of the existing pumping station during hurricane event. Development of such an alternative became more desirable when SWBNO expressed its strong opposition to any plan which calls for establishing a pre-agreed set of conditions for gate closure.

Based on the given set of constraints and associated costs, all alternatives involving channel or pumping station improvements become relatively less feasible. The project plan detailed in Section 33 best meets the objectives of flood protection for the Orleans Avenue Outfall Canal.

60. Need for Further Investigations.

The concept of the butterfly control valve-type gated structure, as recommended in the project plan, was model-tested at the Waterways Experiment Station at Vicksburg, Mississippi. A 1:20 scale physical model of the London Avenue Outfall Canal was built and channel geometry modified to achieve acceptable hydraulic performance. It was observed that a uniform approach flow was necessary for the flow-induced opening and closing of the gates. The designed gates performed satisfactorily under the anticipated flow conditions for the specific London Avenue Canal site geometry. Although the hydraulic conditions of the Orleans Avenue Outfall Canal are similar to the modeled London Avenue Canal, further model studies will be necessary to validate the torque forces required for the detailed design in sizing various components of the structure, as well as to ascertain the reliability of the flow-induced opening and closing operations under a wide range of hydraulic conditions.

ESTIMATE OF COST

61. General. Based on October 1988 price levels, the estimate first cost for constructing the Orleans Outfall Canal Butterfly Valve Control Structure plan is \$9,110,000 of this cost \$7,180,000 is for levees and floodwalls feature \$862,000 for Engineering and Design and \$804,000 for Supervision and Administration. These cost include such cost for inhouse work to prepare this report and prior reports. Table 11 presents the itemized first cost for the butterfly control valve plan.

TABLE 10 ESTIMATE OF FIRST COST (OCT 88 PRICE LEVELS) ORLEANS AVENUE OUTFALL CANAL BUTTERFLY CONTROL VALVE STRUCTURE

Cost Acct No.	Item	Description	Quantity	Unit	Unit Price	Amount
11	A	***CONTROL STRUCTURE***		· ·		
• • •	, A	Embankment-semicompacted	3,000.0	CY	13.00	\$ 39,000
		Structural Excavation	14,000.0		9.00	126,000
		Structural Backfill	500.0		13.00	6,500
		Shell Fill, 6" Thick	103.0		18.00	1,854
		PMA-22 Steel Sheet Piling (128' X 15')	1,920.0		10.00	19, 200
		14" X 14" Concrete Piling (444' X 50')	22,000.0	LF	20.00	444,000
	-	Concrete Stab. Slab, 4"	69.0	CY	100.00	6,900
		Reinf. Concrete Base Slab	722.0	CY	200.00	144,400
		Wall	500.0	CY	350.00	175,000
		Machinery House	275.0	CY	400.00	110,000
		Needle Girder and Support	LS	LS	20,000.00	20,000
		Concrete Needles	LS	LS	60,000.00	60,000
		SUBTOTAL-CONTROL STRUCTURE				\$1,152,854
	В	*STEEL BUTTERFLY GATES(4)*				
		Structural Steel	176,000.0	LB	1.50	\$264,000
		Electrical	LS	LS	200,000.00	200,000
		Mechanical	LS	LS	250,000.00	250,000
		SUBTOTAL-BUTTERFLY GATES				\$714,000
	C	***CONCRETE APRONS***		-		
	· .	Shell Fill, 6" Thick	120.0	ſ	18.00	\$ 2,160
		12" Dia., Untreated Timber Piles, 220 X 25'	5,500.0	LF	9.00	49,500
		PMA-22 Steel Sheet Piling 256' X 12'	3,072.0	SF	10.00	30,720
		Concrete Stab. Slab, 4"	80.0	CY	100.00	8,000
		Reinf. Concrete, Base Slab			200.00	120,000
		Walls	228.0	1	350.00	79,800
		SUBTOTAL-CONCRETE APRONS				\$290,180

TABLE 10 (Cont'd) ESTIMATE OF FIRST COST (OCT 88 PRICE LEVELS) ORLEANS AVENUE OUTFALL CANAL BUTTERFLY CONTROL VALVE STRUCTURE

Cost Acct No. Item Description Quantity Unit Unit Price Amount ***APPROACH GUIDEWALLS*** PZ-35 Steel Sheet Piling 8,000.0 16.50 SF \$132,000 200' X 40' Concrete Cap, 2' X 6' 90.0 CY 350.00 31,500 SUBTOTAL-APPROACH GUIDEWALL \$163,500 Subtotal-A+B+C+D \$2,320,534 11 E ***EROSION PROTECTION *** Shell, 6" Thick 50.0 CY 18.00 900 150.0 Riprap, 12" TON 20.00 3,000 SUBTOTAL-EROSION PROTECTION \$ 3,900 *****COFFERDAM**** F Pz-27 Steel Sheet Piling 30,090.0 SF 12.50 \$ 376,125 51' X 590' 14" Steel H-Piling 9,600.0 24.00 230,400 LH (HP14X73) 60 X 160' 18" Waler, W 18X 76 590.0 LF 35.00 20,650 Removal of Cofferdam LS LS 100,000.00 100,000 300,000 Dewatering LS LS 300,000.00 2 Pile Test 20,000.00 40,000 EA SUBTOTAL-COFFERDAM \$1,076,175 G ***CHANNEL CLOSURE*** Shell Fill, 180' X 54 9,720.0 CY \$ 174,960 18.00 PZ-35 Steel Sheet Piling 6,940.0 SF 16.50 114,510 207' X 33.5' Concrete Cap, 2'X9X207' 138.0 CY 350.00 48,300 Riprap (Lakeside only) 460.0 20.00 9,200 TON SUBTOTAL-CHANNEL CLOSURE \$346,970

30,000.0

CY

****CHANNEL EXCAVATION****

Н

\$ 270,000

9.00

TABLE 10 (Cont'd) ESTIMATE OF FIRST COST

(OCT 88 PRICE LEVELS)

ORLEANS AVENUE OUTFALL CANAL BUTTERFLY CONTROL VALVE STRUCTURE

Acct No.	Item	Description	Quantity	Unit	Unit Price	Amount
	ı	***LEVEE AND FLOODWALL***				
	-	PSA-23 Steel Sheet Piling	480.0	SF	16.00	7,680
	1	PZ-35 Steel Sheet Piling	2,670.0	SF	16.50	44,055
	1	PZ-27 Steel Sheet Piling	69,600.0	SF	12.50	870,000
		Semi-compacted Fill	3,200.0	CY	13 • 00	41,600
		Fully-compacted Fill	600.0	CY	16.00	9,60
		Sand Fill	800.0	CY	16.00	12,80
		Concrete Cap	2,300.0	CY	300.00	690,00
	1	Clearing and Grubbing	8.0	AC	200.00	1,60
		Fertilizing and Seeding	8.0	AC	500.00	4,00
		SUBTOTAL-LEVEE & FLOODWALL				\$1,681,33
			Subtotal-	E+F+G-	+H +I	\$3,369,38
11	J	*ENVIRONMENTAL PROTECTION*	LS	LS	5,000.00	\$ - 5,00
	K	****MOB & DEMOB****	LS	LS	50,000.00	50,00
		GIND TOTAL GOVERNMENT ON GOOD)
		SUBTOTAL CONSTRUCTION COST	·			\$5,744,91
		CONTINGENCIES (25%+)				1,436,22
11		TOTAL CONSTRUCTION COST (R)				7,182,00
30		E & D (12%+) SUBTOTAL				859,00 8,041,00
31		S & A (10%+) SUBTOTAL				804,00 8,845,00
30	L	WES MODEL STUDY	LS	LS	265,000.00	265,00
		******				******
	1		1	1 .	I	1

Comparison of Estimates. The current estimate of \$9,110,000 for the high level plan Orleans Avenue Outfall Canal represents a decrease of \$5,693,000 when compared to the current PB-3 estimate. Table 12 shows a comparison by cost account of the incremential cost required to construct the project plan recommended herein. The largest part of the decrease in cost is in the estimated cost for levees and floodwalls. This reduction in cost is primarily due to a refinement of the designs from a survey scope to a GDM scope. The PB-3 plan was based on fronting protection using a more conventional gate design and higher contingencies. The estimated cost for engineering and design contained in this GDM is based on estimates of cost needed to complete designs for the butterfly valve plan. It includes sunk cost; cost for model test; DDM cost; and P&S preparation costs. The estimate for supervision and administration cost is based on a percentage of the estimated construction cost. The percentage used is reflective of an average of actual S&A cost percentages experienced by the New Orleans District.

TABLE 11

COMPARISON OF ESTIMATES (Incremental Costs)

Feature	PB-3 (eff. Oct 88)	GDM	Difference GDM & PB-3
	(\$)	(\$)	(\$)
11 Levees & Floodwalls	12,146,000	7,182,000	-4,964,000
30 Engineering & Design	1,457,000	1,124,000	-333,000
31 Supervision & Administration	1,200,000	804,000	-396,000
TOTAL PROJECT COST	\$14,803,000	\$9,110,000	-\$5,693,000

SCHEDULE FOR DESIGN AND CONSTRUCTION

63. Schedule for Design and Construction. The recommended project plan contained herein has been developed and is presented as a basis for determining the Federal share to the contributed towards construction of the Parallel Protection Plan. Therefore, no schedule of design and construction for the butterfly valve plan will be presented. Instead, the Federal funding to be contributed for the construction of parallel protection is based on the current design and construction schedule that the Orleans Levee Board has developed. The current schedule for non-Federal funding is shown in Table 13.

FEDERAL AND NON-FEDERAL COST BREAKDOWN

64. Federal and Non-Federal Cost Breakdown. The breakdown of Federal and non-Federal costs needed to construct the butterfly valve plan described in the GDM is shown in Table 12 below:

TABLE 12

FEDERAL AND NON-FEDERAL COST BREAKDOWN OCT 88 PRICE LEVELS

<u>Item</u>	$\frac{\text{Federal}}{(\$)} \frac{1}{}$	Non-Federal (\$)	Total (\$)
Fronting Protection & Levees	6,380,000	2,730,000	9,110,000

 $[\]frac{1}{2}$ Federal share to be contributed towards cost of Parallel Protection Plan.

65. Funds Required by Fiscal Year. To maintain the Orleans Levee Board schedule for design and construction of the Parallel Protection Plan, the Federal share of the funding as described in paragraph 58 has been prorated as a percentage of the total schedule parallel protection cost that is to be expended during the FY. Table 13 gives the estimated schedule of expenditures that OLB has programmed to construct the Parallel Protection Plan. The prorated Federal funds required to support the OLB program are also tabulated by FY in Table 13.

TABLE 13

FEDERAL & NON-FEDERAL FUNDS REQUIRED BY FISCAL YEAR

	Non-Federal	Federal	
Sunk Cost Prior to FY 88	\$ 933,715	\$ 60,000	
Funds Required FY 88	3,796,863	210,000	
Funds Required FY 89	12,507,540	3,500,000	
Funds Required FY 90	8,643,034	2,610,000	
TOTAL	\$25,881,152 <u>1</u> /	\$6,380,000	

^{1/} Does not include cost for Real Estate Acquisition.

OPERATION AND MAINTENANCE

66. General. The Orleans Avenue Outfall Canal butterfly control valve plan would be operated at the expense of the local interests. The estimate of the annual operation and maintenance costs for the control structure and appurtenant levees and floodwalls which are detailed in the GDM are as follows:

Maintenance & replacement of machinery \$ 4,800 Three-time major replacement 5,400 of gates @ Year 50

TOTAL ANNUALIZED COST

\$10,200

ECONOMICS

67. Economic Justification.

The current economic analysis for the entire Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project is contained in the Reevaluation Study entitled "Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project," dated December 1983. Based on October 1981 price levels, and the project interest rate of 3 1/8 percent, the benefit-cost ratio for the project as a whole was 4.2 to 1. The project is currently under construction and a remaining benefit-remaining cost ratio at the project interest rate is 9.9 to 1 and at the current Federal discount rate is 5.0 to 1. The Reevaluation Study also broke out separable project areas (SPA) for incremental justification. The Orleans Outfall Canal reach is a part of the New Orleans-Jefferson SPA. The computed benefit-cost ratio for the New Orleans-Jefferson area was 5.0 to 1 in the 1984 Reevaluation Study. Updating this SPA for price levels and interest rates produces a remaining benefit to remaining cost ratio of 6.0 to 1 at the project interest rate and 1.6 to 1 at the current Federal interest rate.

68. Recommendations. It is recommended that the project plan detailed herein (butterfly valve plan) be approved as the recommended Federal plan. It has been shown to be the most economical plan which fully satisfies the mandate of the project authorization. When compared to the parallel protection plan, it is approximately 5 times less costly. Also, the butterfly valve plan fully accommodates existing and future interior drainage requirements for the City of New Orleans. Because the Orleans Levee Board is actively preparing designs and plans to construct parallel protection and has also budgeted funds for said purpose, the

need for the fronting protection butterfly valve plan will be eliminated. It is therefore recommended that the butterfly valve plan be used to establish the limits on Federal cost sharing to be applied to the cost of parallel protection.

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 - GENERAL DESIGN
ORLEANS AVE. OUTFALL CANAL

MACHINERY LAYOUT

U. S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS

TE AUG. 1988 FILE NO. H-2-30290

EAST SIDE-ORLEANS AVENUE OUTFALL CANAL

LAKE PONTCHARTRAIN, LA AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL

SOIL AND GEOLOGIC PROFILE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS JUNE 1988 FILE NO. H-2-30290

EAST SIDE - ORLEANS AVENUE OUTFALL CANAL

FILE NO. N-2-30290

SOIL AND GEOLOGIC PROFILE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

WEST SIDE - ORLEANS AVENUE OUTFALL CANAL

WEST SIDE - ORLEANS AVENUE OUTFALL CANAL

FILE NO. H-2-30290

CORPS OF ENGINEERS

JUNE 1988

LOAD P TONS / SQ. FT.

LOAD P TONS / SQ. FT.

LOAD P TONS / SQ. FT.

SHEAR STRENGTH

TONS / SQ. FT.

BORING LEGEND:

- SHEAR STRENGTHS
- O D 2-OUG, 3-OUG, 6-OUW, I-UOP TOE, PLATES 29,30.25.27

 5-ULO, I-OUG C/L, PLATES 26, 28
- ▲ ▼ 37-52 APPENDIX A
- GENERAL TYPE BORINGS ALSO USED FOR STRATIFICATION AND CLASSIFICATION ARE: 1-OP, & 2-OP

3 PT EUSTIS ENGINEERING 5" LD. BORING

5" I.D. BORING

3" L.D. BORING

O . UNCONFINED COMPRESSION TESTS

 \blacksquare \blacktriangleright \bigcirc \triangledown \blacktriangleleft \diamondsuit unconsolidated undrained triaxial compression tests

SEE APPENDIX A FOR EUSTIS ENGINEERING BORINGS AND LABORATORY TESTS

LAKE PONTCHARTRAIN, LA. AND VICINITY HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

WET DENSITY

POUNOS / CU. FT.

6<u>0 80 100 120 14</u>0

SOIL DESIGN PARAMETERS

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS JUNE 1988 FILE NO. H-2-30290

	RSSU		RES	STING F	ORCES		VINO CES	SUMMA OF FO		FACTOR
IIA7		ELEY.	R _A	R∎	R _P	D _R	- D _P	ONITRIESS	ORIVINO	SAFETY
®	1	-7.0	13883	11509	4706	16841	2744	30098	14097	2.14
₿	1	-11.0	14512	8459	5967	24569	5872	28938	18697	1.55
©	1	-16.0	17959	8387	8272	36628	12150	34818	24478	1.41

8 TRATUM	801L	EFFE	34113	c-	UNIT COHES	JON - P.S.	F.	FRICTION
OTHERON		UNIT HT	. P.C.F.	CENTER OF	STRATUH	BOTTON OF	STRATUN	ANOLE
NO -	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREE8
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2 >,	(CH)	115.0	115.0	700.0	700.0	700~0	700.0	0.0
3	(CH)	100.0	101.0	300.0	400~0	306-0	400-0	0.0
4	(CH)	75.0	90-0	150.0	300.0	150.0	300.0	0.0
<u>(5)</u>	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0
(B >	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	39.0

CLASSIFICATION, STRATIFICATION, SHEAR STRENOTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 39

<u>NOTES</u>

- → - ANOLE OF INTERNAL FRICTION. DEOREES

C -- UNIT COMESION. P.S.F.

V -- STATIC HATER SURFACE

D -- HORIZONIAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS' A SUBSCRIPT, REFERS TO ACTIVE WEDDE B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN
DESIGN MEMORANDUM NO.19 — GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL PROTECTED SIDE LEVEE STABILITY ANALYSIS STA. 0+00 TO 36+50 EAST SIDE CORPS OF ENGINEERS

JUNE 1988

Γ	RSSU		RES	STINO I	ORCES		IVINO RCES	SUMMA OF FO		FACTOR OF
ľ	HO.	ELEV.	RA	8 h	R _P	De	- D p	RESISTING	ORIVINO	SAFETY
T	(1)	-7.0	17266	8568	5435	14825	2876	29269	11949	2.45
- 10	B (1)	-11-0	18281	10590	1499	22003	1407	30370	20596	1.47
- 1	© (1)	-16.0	21478	11953	3000	32765	4775	36431	27990	1.30

STRATUM	SOIL	EFFE	STIVE	c -	UNIT COHES	ION - P.8.	.F.	FRICTION
		TH TINU	. P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUN	RNOLE
NO:	TYPE	VERT. 1	VERT. 2	YERT. 1	VERT. 2	VERT- 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0
3	(CH).	100.0	101.0	300.0	400.0	300.0	400.0	0.0
4	(CH)	75.0	90.0	150.0	300.0	150.0	300.0	0.0
(5)	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0
<u>(6)</u>	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 39

NOTES

Φ -- ANOLE OF INTERNAL FRICTION. DEOREES

C -- UNIT COHESION, P.S.F.

▼-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE WEDGE

B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

DESIGN MEMORANDUM NO: 19 - GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL FLOOD SIDE LEVEE STABILITY ANALYSIS

STA. 0+00 TO 36+50 EAST SIDE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

JUNE 1988

	RSSU		RES	ISTINO	FORCES		IVINO RCES	SUMMA OF FO	TION DRCES	FACTOR OF
F91L NO		ELEY.	Ra	R _B	Rp	Da	- D _P	RESISTING	ONIVIRO	SAFETY
®	1	-7.0	14656	8462	4259	15036	2404	27377	12632	2.17
B	1	-11.0	16557	6523	8180	22905	5045	28260	17860	1.58
®	2	-11.0	16557	14403	2100	22905	1780	33060	21125	1.56
©	1	-19.0	19340	11191	7626	43248	14600	38157	28648	1.33
©	2	-19.0	19340	20031	5400	43248	8992	44771	34256	1.31

STRATUN	401F	EFFE	34112	c -	UNIT COMES	10N - P.8.	F.	FRICTION
		TH TEMU	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	RNOLE
NO.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110.0	400.0	400.0	400.0	400-0	0.0
3	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0
4	(CH)	100.0	101 -0	300.0	400.0	300.0	400.0	0.0
(5)	(CH)	75.0	90.0	150.0	300.0	150.0	300.0	0.0
<u>6</u>	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0
<u>√</u> 2>	(SP).	122.0	122.0	0.0	0.0	0.0	0.0	33.0

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS, SEE BORING DATA PLATE 39

NOTES

→ -- ANOLE OF INTERNAL FRICTION, DEOREES

C -- UNIT COHESION. P.S.F.

V-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE

B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN

DESIGN MEMORANDUM NO. 19 - GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL
PROTECTED SIDE LEVEE

STABILITY ANALYSIS

STA. 36+50 TO 50+00 EAST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

JUNE 1988

	ASSI		RESI	STINO	ORCES		VINO	SUMMA OF FO		FACTOR OF
ľ	NO.	ELEV.	Re	R ₈	R _P	D _R	- D.p	ONITE:839	ORTVING	SAFETY
[9 (1)	-11.0	16542	11659	1359	19726	1331	29560 °	18396	1.61
(B (1)	-19.0	20787	12780	4100	37153	8104	37647	,29049	1.30

STRATUM	801F	EFFE	TIVE	c -	UNIT CONE	104 - P.S.	<u> </u>	FRICTION
		TH TINU	P.C.F.	CENTER OF	STRATUN	BOTTON OF	STRATUR	ANOLE
ŃΟ↑	TYPE	VERT. 1	VERT 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110.0	400.0	400 .0	400.0	400 -0	0.0
3	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0
4	(CH)	100.0	101.0	300.0	400 · 0	300.0	400.0	0.0
<u>\$</u>	(CH)	75.0	90.0	150.0	300.0	150.0	300.0	0.0
(B)	.CH)	100.0	102.0	200.0	360.0	200.0	350.0	0.0
7	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR STRENOTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS, SEE BORING DATA PLATE 39

NOTES

Φ -- ANOLE OF INTERNAL FRICTION. DEOREES

C -- UNIT COMESION. P.S.F.

又-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE

B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_R + R_R + R_P}{D_R - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN
DESIGN MEMORANDUM NO.19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
FLOOD SIDE LEVEE
STABILITY ANALYSIS
STA.36+50 TO 50+00 EAST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS

CORPS OF ENGINEERS

JUNE 1988

FACTOR OF		SUMMA OF FO	RCES		FORCES	ISTING	RES		RSSU	
SAFETY	DRIVIMO	REGISTINO	-Dp	Da	R _P	R _B	Ra	ELEY.	LURE .	
2.19	11387	24908	2379	13766	4406	7529	12974	-7.0	①	B
1.62	16018	26006	5379	21397	5579	5395	15032	-11.0	①	B
1.60	19745	31586	1652	21397	2100	14454	15032	-11.0	2	B
1.37	26673	36603	17519	44192	8846	7274	20483	-20.0	①	Ō
1.32	33850	44587	10342	44192	5800	18304	20483	-20.0	<u>@</u>	Ō
1.31	32430	42565	28040	60470	11803	11005	19757	-25.0	Ō	Ō
1.35	40594	54981	19876	60470	8800	26424	19757	-25.0	②	Ō

STRATUM	SOIL	EFFE	CTIVE	c -	UNIT COHES	ICN - P.S.	F.	FRICTION	
O I KH I OII		TH TINU	. P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	RNOLE	
NO.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREE8	
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	110.0	110.0	400-0	400-0	400-0	400-0	0.0	
3	(CH)	115.0	115.0	700 -0	700.0	700 -0	700.0	0.0	
4	(CH)	100.0	101.0	300.0	400-0	300.0	400-0	0.0	
(5)	(CH)	75.0	90.0	150.0	300.0	150-0	300.0	0.0	
6	(CH)	100.0	102.0	200.0	350-0	200.0	350.0	0.0	
7	(CH)	100.0	102.0	300.0	350.0	300.0	350.0	0.0	
(8)	.SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0	

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 39

NOTES

♦ -- ANGLE OF INTERNAL FRICTION. DEOREE8

C -- UNIT COHESION, P.S.F.

▼-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE MEDGE

B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE MEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN
DESIGN MEMORANDUM NO.19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
PROTECTED SIDE LEVEE
STABILITY ANALYSIS
STA.50+00 TO 64+00 EAST SIDE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

JUNE 1988

	888U		RESI	STING F	ORCES	DR I FOR	VING CES	SUMMA OF FO		FACTOR OF
FRE		ELEY.	R	R _B	R,	D _A	- D,	RESISTING	ORIVIRO	SAFETY
lacksquare	1	-10.0	11582	13126	1135	15973	936	25943	15037	1.73
₿	1	-20.0	18276	12440	4621	36446	9562	35337	26884	1.31
©	1	-25.0	21653	12691	7557	50226	18015	41901	32211	1.30

STRATUM	801L	EFFE	CTIVE	ε -	UNIT COHES	10N - P.E.	.F.	FRICTION
	1	UNJT NT	. P.C.F.	CENTER OF	STRATUM	BOTTOK OF	STRATUM	ANGLE
NG.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREE8
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0-0
2	(CH)	110.0	110.0	400 -0	400.0	400 - 0	400-0	0-0
3	:CH)	115.0	115.0	700.0	700 - 0	700.0	700 - 0	0-0
4	(СН)	100.0	101.0	300.0	400-0	300.0	400-0	0.0
(E)	(CH)	75 -0	90.0	150.0	300.0	150.0	300.0	0.0
<u>(B)</u>	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0
7	(CH)	100.0	102.0	300.0	350.0	300.0	350.0	0-0
(8)	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENGTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS. SEE BORING DATA PLATE 39

NOTES

- Φ --- RNOLE OF INTERNAL FRICTION. DEOREE8
- C --- UNIT COHESION, P.S.F.
- ▼--- STATIC WATER SURFACE
- D --- HORIZONTAL CRIVING FORCE IN POUNDS
- R --- HORIZONTAL RESISTING FORCE IN POUNDS
- A --- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE
- B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK
- P --- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_{A} + R_{B} + R_{P}}{D_{A} - D_{P}}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN
DESIGN MEMORANDUM NO.19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
FLOOD SIDE LEVEE
STABILITY ANALYSIS

CORPS OF ENGINEERS

STABILITY ANALYSIS
STA.50+00 TO 64+00 EAST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS

JUNE 1988

	ASSU		RES	ONITEL	FORCES		DRIVINO FORCES		SUMMATION OF FORCES	
FRIL NO		ELEY.	Ra	R ₈	Rp	De	- D p	RESISTING	DRIVINO	SAFETY
(A)	1	-11.0	9385	13503	4341	20033	3926	27229	16107	1-69
Ā	2	-11.0	9385	20033	2184	20033	1630	31602	18403	1.72
B	①	-20.0	12032	16153	7980	40573	15042	36165	25531	1.42
➂	<u>@</u>	-20.0	12032	24583	5823	40573	10352	42438	30221	1.40
Ō	1	-33.0	19952	13742	15430	83217	45442	49124	37775	1.30
Ō	②	-33.0	19952	24646	13600	83217	38370	58198	44847	1.30

STRATUM	SOIL	EFFE	34110	<u>c -</u>	FRICTION			
_,,,		TH TINU	P.C.F.	CENTER OF STRATUM		BOTTOM OF	STRATUN	RNOLE
NO .	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62.5	62 -5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110-0	400-0	400.0	400.0	400.0	0.0
(3→	(CH)	115.0	115-0	700.0	700.0	700.0	700.0	0.0
(1)	(CH)	100-0	101.0	300-0	480.0	300.0	400-0	0.0
- (5)	(CH)	75.0	90-0	150.0	300.0	150.0	300.0-	0.0
6	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0
7	(CH)	100.0	102.0	300.0	350.0	300.0	350.0	0.0
(8)	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 39

<u>NOTES</u>

Φ -- ANOLE OF INTERNAL FRICTION. DEORGES
C -- UNIT COHESION P.S.E.

▼-- STATIC WATER SURFACE

JUNE 1988

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE

B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- RS A SUBSCRIPT, REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN

DESIGN MEMORANDUM NO.19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
PROTECTED SIDE LEVEE
STABILITY ANALYSIS

STA.64+00 TO 90+50 EAST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

FILE NO. H-2-30290

	ASSUMED FAILURE SURFACE		RES	ISTING I	ORCES	DRIVING FORCE8		SUMMATION OF FORCES		FACTOR
FR.I		ELEY.	R _R	R _B	R _P	Da	~0 _₽	001181838	ORIVINO	SAFETY
®	(-11.0	11831	8974	1371	14277	1332	22178	12945	1.71
₿	1	-20.0	17548	9376	4621	32291	9562	91545	22729	1.39
(C)	1	-33.0	25449	12391	12100	74586	36025	49940	38560	1.30

STRATÚN	1108	EFFE	CLIAE	٤ -	C - UNIT CONESION - P.S.F.					
		TH TINU	P.C.F.	CENTER OF STRATUM		BOTTON OF	STRATUN	ANOLE		
NO.	TYPE	VERT. 1	VERT. 2	VERT- 1	VERT. 2	VERT. 1	VERT. 2	DEOREES		
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0		
2	(CH)	110.0	110.0	400-0	400.0	400-0	400-0	0.0		
3	(CH)	118.0	115.0	700.0	700.0	700.0	700.0	0.0		
4	(CH)	100-0	101.0	300.0	400.0	300.0	400.0	0.0		
⑤	(CH)	75.0	90.0	180.0	300.0	150-0	300.0	0.0		
⊕	(CH)	100.0	102.0	200.0	350.0	200.0	350.0	0.0		
7	(CH)	100-0	102.0	300.0	350.0	300.0	350.0	0.0		
⊕	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0		

CLASSIFICATION, STRATIFICATION, SHEAR STRENOTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINOS. SEE BORINO DATA PLATE 39

NOTES

Φ -- ANOLE OF INTERNAL FRICTION. DEOREES

C -- UNIT COHESION, P.S.F.

∇-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE HEDDE

B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE WEDGE

FACTOR OF SAFETY = $\frac{R_R + R_B + R_P}{0_R - 0_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEE PLAN
DESIGN MEMORANDUM NO. 9 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
FLOOD SIDE LEVEE
STABILITY ANALYSIS
STA. 64+00 TO 90+50 EAST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

JUNE 1988

NOTE:	F/OODV	VA11	TIP	ELEVATION	VARIFS
/ / U / C \	1 2000 V	Y / 7	///	ELEVATION	1/1/1/2

STRATUM	80JL	EFFE	STIVE	c -	UNIT CONES	ION - P-S	F.	FRICTION	
		TH TIMU	. P.C.F.	P.C.F. CENTER OF STRATUM		BOTTON OF	BOTTON OF STRATUM		
HC.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT . 2	VERT. 1	VERT . 2	DEDREES	
1	(WATER)	62.5	62.5	6.0	0.0	C-0	0.0	0.0	
2	(CH)	115.0	115.0	700-0	700.0	700-0	700.0	0.0	
3	(CH)	112.0	112.0	600-0	600.0	600.0	600.0	0.0	
4	(CH)	103.0	103,0	280.0	280.0	280-0	280.0	0.0	
(5)	(CH)	103.0	103.0	350.0	350.0	350.0	350.0	0.0	
(8)	(CH)	102.0	102.0	500.0	500.0	500.0	500.0	0.0	
7	(SP)	122.0	122.0	ำ.0	0.0	0.0	0.0	33.0	

RESUMED		RESISTING FORCES			DRIVING FORCES		SUMMATION OF FORCES		FACTOR OF
HO.	ELEY.	Ra	R _a	R _P	Da	- D _P	REGISTING	DRIVING	SAFETY
® ①	-10-0	17423	11760	2434	20580	1316	31617	19264	1.64
(B) (1)	-20.0	22514	12950	8215	44328	10910	43680	33418	1.31
Ŏ Ō	-35.0	33697	15000	21616	95832	43516	70313	52316	1.34

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

♦ -- ANOLE OF INTERNAL FRICTION. DEOREES

C -- UNIT COMESION. P.S.F.

V-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE NEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

FLOODSIDE LEVEE STABILITY ANALYSIS STA. 90 + 50 TO STA. 104 +00

> U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS
> FILE NO. H-2-30290 JUNE , 1988

NOTE: FLOODWALL TIP ELEVATION VARIES

STRATUM	SOIL	EFFE	TIVE	ε -	UNIT COHES	310N - P.S.	.F.	FRICTION	
		UNJT HT	P.C.F.	CENTER OF STRATUM		BOTTON OF STRATUM		ANOLE	
NO.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREE6	
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0	
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0	
4	(CH)	103.0	103.0	280.0	280.0	280 -0	280.0	0.0	
⟨₹)	(CH)	103.0	103.0	350.0	350.0	350.0	350.0	0.0	
⑤	(CH)	102.0	1C2 -0	500.0	500.0	500.0	500.0	0.0	
<u>₹</u>	(SP)	122.0	122.0	0-0	0.0	0.0	0.0	33.0	

	ASSU		RES	ISTING	FORCES		DRIVING FORCES		SUMMATICN OF FORCES	
FAILURE NO.		SURFACE ELEY.	Ra	R ₈	R _P	Da	-Dp	RESISTING	DRIVING	SAFETY
®	1	-10.0	13397	7560	6461	21911	5796	27418	16115	1.70
(B)	1	-20.0	18416	7350	13034	47708	21522	38800	26180	1.48
©	1	-35.0	31436	15000	26988	103421	60415	73424	43006	1.71

OENERAL NOTES:

CLASSIFICATION. STRATIFICATION. SHEAR
STRENOTH. AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS. SEE BORING DATA PLATE 40

NOTES

LAKE PONTCHARTMAN, LA AND VICINITY
HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GEMERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL
PROTECTED SIDE

LEVEE STABILITY ANALYSIS

STA. 90 + 50 TO STA. 104 + 00

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

JUNE, 1988 FILE NO. H-2-30290

NOTE:

TOP ELEVATION AND TIP ELEVATION OF FLOODWALL VARIES.

♥ ♥ PH LINE IN STRATUM (3)

TRATUM	801L	EFFEC	3VLT:	c -	UNIT COHES	ION - P.S.	F.	FRICTION
		UNIT NT	P.C.F.	CENTER OF	STRRTUM	BOTTON OF	STRATUM	RNOLE
NO.	TYPE	VERT - 1	VERT. 2	YERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62 - 5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0
④	(CH)	103-0	103,0	280.0	280.0	280.0	280.0	0.0
⑤	(ML)	117-0	117.0	200.0	200.0	20C-0	200.0	15.0
6	(CH)	102-0	102.0	500.0	500.0	500.0	500.0	0.0
⑦	(SP)	122.0	122,0	0.0	0.0	0.0	0.0	33.0
8	(CH)	106-0	0,801	750.0	750.0	750.0	750.0	0.0

868U		RESISTING FORCES			DRIVING FORCES		SUMMATION OF_FORCES		FACTOR OF
NO .	ELEY.	Ra	R _B	R.	D _R	D.p	RESISTINO	ONIVING	SAFETY
(A)	-8.0	18196	13026	1539	19727	533	32761	19194	1.71
® ①	-20.0	28554	18837	9152	50844	11592	56543	39252	1.44
© Ū		42389	150CC	23205	108427	47255	80594	61172	1.32
	-42.0	52623	21000	42208	142921	71170	115831	71751	1.61

DENERAL NOTES.

CLASSIFICATION, STRATIFICATION, SHEAR STRENOTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

▼-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE WEDGE

B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

FLOODSIDE LEVEE STABILITY ANALYSIS

STA. 104 + 00 TO LAKEFRONT LEV.

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS
JUNE, 1988 FILE NO. H-2-30290

STRATUM	881L	SIL EFFECTIVE		c -	C - UNIT CONESION - P.S.F.					
	TYPE	TH TINU	. P.C.F.	CENTER OF STRATUM		BOTTON OF STRATUM		ANOLE		
NO.		VERT . 1	VERT . 2	VERT. 1	VERT . 2	VERT. 1	VERT . 2	DEOREES		
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0		
2	(CH)	115.0	115.0	700.0	700.0	700.0	700.0	0.0		
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0		
④	(CH)	103.0	103.0	280.0	280.0	280.0	280.0	0.0		
⑤	(ML)	117-0	117-0	200.0	200.0	200.0	200.0	15.0		
6	(CH)	102.0	102.0	500.0	500.0	500.0	500.0	0.0		
7	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0		
(8)	(CH)	106.0	106.0	750.0	750.0	750.0	750.0	0.0		

₹ - PH LINE IN STRATUM 7

RESU		RES	ISTING	FORCES		VING	SUMMA OF FO	FACTOR OF	
FAILURE NO.	ELEY.	R _R	R _B	R _P	D _R	Dp	REGIGTINO	DRIVING	SAFETY
(A)	-8.0	17601	5040	9853	20296	7751	32494	12545	2.59
® ①	-20.0	25936	10366	19288	52431	29818	55590	22613	2.46
© (1)	-35.0	35644	14500	32424	113368	77877	82568	35481	2.33

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH. AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES_

♦ -- ANOLE OF INTERNAL FRICTION, DEGREES C -- UNIT COMESION, P.S.F. V-- STATIC WATER SURFACE D -- HORIZONTAL DRIVING FORCE IN POUNDS R -- HORIZONTAL RESISTING FORCE IN POUNDS A -- AS A SUBSCRIPT. REFERS TO ACTIVE HEDDE B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK P -- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO. 19 GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL PROTECTED SIDE LEVEE STABILITY ANALYSIS STA. 104+00 TO LAKEFRONT LEVEE U.S. ARMY ENGINEER DISTRICT, NEW GRLEANS

ASSUM ATLUNE			RES	ISTINO	FCRCES		IVING RCE8	SUMMA OF FO	TION ORCES	FACTOR
	B.	ELEV.	Ra	R _B	R _P	· D _R	-Dp	MEATS: THO	0817190	SAFETY
A)	1	-6.0	3001	7912	3252	11048	1533	14:65	9515	1.49
Ā	②	6.0	3001	13037	900	11048	129	16538	10918	1.55
B	Ō	-10.0	3669	7912	4347	16873	4219	15928	12654	1 - 26
B	2	10.0	3609	12437	2100	16873	1692	18206	15181	1.20
Ď	Ū	12.9	4308	9637	5460	21833	6983	19305	14850	1.30
Ò	②	12.9	4308	15300	3260	21833	3555	22868	18278	1.25
Ď	Ō	-13.8	5830	17486	5573	21228	7082	28889	14146	2.04
D)	(2)	-13.0	5830	263::	3305	21228	3174	35446	18054	1.96

STRUTUM	8011	EFFE	CTIVE	_ c	FRITTION				
		UNIT NT	. P.C.F.	CENTER OF	STRREUM	BOTTOM OF	STRRTUM	AHOLE	
90.	TYPE	VERT. 1	VEST. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES	
1	(WATER)	82 - 5	62.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	150.0	150.0	400.0	400.0	400.0	400.0	0.0	
3	(CH)	110.0	110.0	400.0	400.0	400.0	400.0	0.0	
④	(CH)	115-3	115.0	700-0	700.0	700.0	700.0	0.0	
⟨5 ⟩	(CH)	100.0	100.0	300.0	300.0	300.0	300.0	0.0	
⑤	(CH)	75.0	84-0	150.0	250.0	150.0	250.0	0.0	
⑦	(CH)	100.0	100.0	200.0	300.0	200.0	300.0	0.0	
(8)	(SP)	122-0	122.0	0.0	0.0	0.0	0.0	33.0	
<u>(9)</u>	(SP)	122-0	122.0	0.0	0.0	0.0	0.0	33.0	

CLASSIFICATION, STRATIFICATION, SHEAR STRENOTH, AND UNIT WEIGHT OF THE SCIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

♣ --- ANOLE OF INTERNAL FRICTION, DEGREES

C --- UNIT COHESION. P.S.F.

▼ STATIC MATER SURFACE

D --- HORIZONTAL GRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SURSCRIPT, REFERS TO ACTIVE HEDDE

B --- AS A SURSCRIPT, REFERS TO CENTRAL BLOCK

P --- AS A SUBSCRIPT, REFERS TO PASSIVE NEDGE

FRCTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO.19 - GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL PROTECTED SIDE LEVEE STABILITY ANALYSIS STA. 0+00 TO 22+40 STA. 23+40 TO 29+40 WEST SIDE U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS

FILE NO. H-2 - 30290

ASSII FAILURE			RES	ISTING	FORCES		IVINO RCE8		TICN DRCE8	FACTOR
FBII		EILEY .	R _n	R _B	R	Da	- D _p	RESISTING	ORIVING	SAFETY
(A)	0	-6.0	9099	2563	o	5763	31	11662	5732	2.03
⑧	0	-10.0	10780	2038	1188	10816	962	1400€	9854	1.42
⑧	②	-10.0	10780	3688	935	10816	847	15403	9869	1.65
Ŏ	Ō	-12.9	11761	2372	2281	15298	2428	16414	12870	1.28
Ö	Ø	-12.8	11761	2646	2050	15298	2283	18457	13015	1.26
Ō	Ō	-13.0	11827	3397	2300	15465	2489	17524	12976	1.35
Ŏ	Ø	-13.0	11827	3714	2056	:5465	2347	17597	13118	1.34

STRRTUM	1108	EFFE	CTIVE	<u> </u>	FR:CTION				
		UNIT MT	. P.C.F.	CENTER OF STRATUM		BOTTON OF STRATUM		ANOLE	
. 3K	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEDREES	
(I)	(WATER)	62.5	82.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	110-0	110.0	400-0	400-0	400.0	400-0	0.0	
3	(CH).	115.0	115.0	700.0	700.0	700.0	700.8	0.0	
4 >	(CH)	100-0	100.0	300-0	300.0	300.3	300.0	0.0	
(5)	(CH)	75.0	84 - 0	150.0	250.0	150-0	250.0	0.0	
(B)	(CH)	100.0	100-0	200.0	300.0	200.0	300.0	0.0	
<u>7</u>	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0	
(8)	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0	

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS, SEE BORING DATA PLATE 40

NOTES

♦ --- ANOLE OF INTERNAL FRICTION. DEOREES

C --- UNIT COHESION, P.S.F.

又--- STATIC HATER SURFACE

D --- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SUBSCRIPT. REFERS TO ACTIVE HEDDE

B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P --- AS A SUBSCRIPT. REFERS TO PASSIVE NEDDE

FRCTOR OF SRFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDIM NO. 19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
FLOOD SIDE LEVEE
STABILITY ANALYSIS
STA. O+OO TO 22+40
STA. 23+40 TO 29+40 WEST SIDE
U.S. ARMY ENGINEER DISTRICT, NEW ORLEARS
CORPS OF ENGINEERS
JUNE 1988
FILE NO. N-2 - 30290

NOTE: ANALYSIS WAS PERFORMED WITH A FACTOR OF SAFETY OF 1.3
INCORPORATED INTO THE SOIL PARAMETERS.

STRATUM	801L	EFFEC		C - CENTER OF	UNIT COMES	8-1 - NOI BOTTON OF		ERICTION ANOLE	NO.	ELEV.	UA =	DA - RA	R _E	R _B +R	թ+0թ D _P	UA	Up	UA - UP	
NO.	TYPE	VERI . 1	VERI . 2	VERI . 1	VERT. 2	VERI . 1	VERT . 2	DEGREES	BASE	-3.0	7329	0	1848	0	0	7329	1848	5481	֓֟֟֝֟֟֟֟֟֓֓֟֟֟֓֓֓֟֟֟֓֓֓֓֟֟֟֓֓֓֟֟֓֓֓֓֟֟֓֓֓֓֟֓֓֟֓֓֓֟֟֓֓֓֟֓֓֓֟֓֓֓֓
(I)	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0			1000								إ
2	(CH)	100.0	100-0	231.0	231.0	231.0	231.0	0.0	1	-6.0	10887	1318	1536	1267	1382	9569	4185	5384	6
3	(CH)	100-0	100.0	231.0	231.0	231.0	231.0	0.0											┥
<u> </u>	(CH)	75.0	84-0	115.0	192.0	115.0	192.0	0.0	2	-10.0	16878	3858	2976	3384	3400	13020	9760	3260	1
<u>(S</u>	(CH)	100.0	100.0	154.0	231.0	154.0	231.0	0.0			┼──-┤		-						┥
(B)	(SP)	122.0	122.J	0.0	0.0	0.0	0.0	26.5	3	-19.0	35481	6623	4966	4985	11690	28858	21641	7217	1

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
BTRENOTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINOS, SEE BORING DAIA PLATE 40

NOTES

♣ -- ANGLE OF INTERNAL FRICTION, DEGREES

C -- UNIT COHESION. P.S.F.

▼-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS
A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE

B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE HEDDE

FACTOR OF SAFETY = $\frac{R_A + R_0 + B_P}{D_A - D_P}$

DESIGN MEMORANDUM NO.19 - GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL FLOOD SIDE LEVEE

DEEP SEATED STABILITY ANALYSIS

STA. 29+40 TO STA. 50+00

WEST SIDE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS
INE 1988 FILE NO.H-2-30290

C - UNIT CONESION - P.S.F.

0.0 0.0

UNIT HT. P.C.F. CENTER OF STRATUM BOTTOM OF STRATUM AMOLE VERT. 1 VERT. 2 VERT. 1 VERT. 2 VERT. 1 VERT. 2 DEGREES

(CH) 100.0 100.0 300.0 300.0 300.0 0.0

(CH) 75.0 84.0 150.0 250.0 150.0 250.0 0.0

(CH) 100.0 100.0 200.0 300.0 200.0 300.0 0.0

(SP) 122.0 122.0 0.0 0.0 0.0 0.0 33.0

STRATUM

(WATER) 62.5 | 62.5 | 0.0

AGEUHED		RE8	ISTINO I	FORCES		IVINO RCE8	8UMMA OF FO	FACTOR		
FRII NO		ELEY.	Ra	R _B	R _P	Da	-Dp	REAJ4T ING	OKIVINO	SAFETY
(A)	1	-10-0	5352	3750	900	4661	869	10002	3782	2.64
⑧	①	-19.0	10117	2563	4249	15871	7974	16929	7897	2.14

GENERAL NOTES: CLASSIFICATION, STRATIFICATION, SHEAR

STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

♦-- ANOLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION, P.S.F.

▼-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SUBSCRIPT, REFERS TO ACTIVE MEDGE

B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK P -- AS A SUBSCRIPT. REFERS TO PASSIVE HEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_R - D_P}$

LAKE PONTCHARTRAIN, LA AND VICINITY

HIGH LEVEL PLAN DESIGN MEMORANDUM NO. 19 GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

FLOOD SIDE STABILITY ANALYSIS STA. 29 + 40 TO STA. 50 + 00

WEST SIDE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS FILE NO. H-2-30290

NOTE: ANALYSIS WAS PERFORMED WITH A FACTOR OF SAFETY OF 1.3 INCORPORATED INTO THE SOIL PARAMETERS.

STRATUM	SOIL	EFFE	STIVE	_ c -	FRICTION				
	TYPE	TH TIMU	. P.C.E.	P.C.E. CENTER DE STRATUN		BOTTON OF STRATUM		MOLE	
NO.		YERT. 1	VERT. 2	VERT. 1	VERT. 2	YERS. 1	VERT. 2	DEOREES	
1		62.5	62.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	75.0	84.0	115.0	192.0	115.0	192.0	0.0	
3	(CH)	75.0	84.0	115.0	192 -0	115.0	192.0	0.0	
④	(CH)	100.0	100.0	154.0	231.0	154.0	231.0	0.0	
⑤	(CH)	100.0	100-0	231 -0	250.0	231.0	250.0	0.0	
⑤	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	26.5	
7>	(CH)	105.0	105.0	485.0	485 -0	485.0	485 -0	0.0	

	NO	EL EV	U _A =	DA - RA	UP=	R _B + R	P + DP	11	4.1	11. 11.
	NO.	ELEV.	DA	RA	RB	RР	DΡ	U _A	Up	UA -UP
	BASE	- 7.5	11699	0	1536	0	0	11699	1536	10163
	ı	-10.0	15098	0	2610	920	600	15098	4130	10968
	2	-20.0	34659	6169	4273	4000	8600	,28490	16873	11617
	3	-33.0	74706	11586	7472	10006	33949	63120	51427	11693
I	4	-43.0	118100	24211	18430	26481	66048	93889	110959	-17070

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL HERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

NOTES

 ϕ -- Anole of Internal Eriction, Deorees c -- Unit Cohesion, P.S.F. \Box -- Static Hater surface D -- Horizontal Driving Force in Pounds R -- Horizontal Resisting Force in Pounds A -- As a subscript, refers to active Hedge B -- As a subscript, refers to central block P -- As a subscript, refers to passive Hedge Factor of Safety = $\frac{R_B + R_0 + B_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 - GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
FLOOD SIDE LEVEE

DEEP SEATED STABILITY ANALYSIS
STA. 64+QO TO STA. 90+50
WEST SIDE

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS
JUNE 1988
FILE NO.H-2-30290

STRATUM	SOIL	EFFE	SIIVE	c -	C - UNIT COMESION - P.S.F.				
		TH TIMU	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	AMOLE	
ж.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES	
Θ	(WATER)	62 - 5	62 - 5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	105.0	105.0	250.0	250.0	250.0	250.0	0.0	
3	(CH)	100-0	100-0	300.0	300-0	300.0	300.0	0.0	
•	(CH)	75-0	84-0	150-0	250.0	150.0	250.0	0.0	
(5)	(CH)	100-0	100-0	200.0	300.0	200-0	300-0	0.0	
6	(CH)	100.0	100.0	300.0	325.0	300.0	325.0	0.0	
7	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0	

NOTE: DASHED LINES REPRESENT

EXISTING CONDITIONS, WEDGES 1-3, J-3, AND K-3

	MESU		RE\$	ISTING	FORCES		IVING RCE8	SUMMA OF FO	TION DRCE8	FACTOR OF SAFETY
<u>Fail</u> Mô		ELEV.	R _a	R ₈	Rp	D _A	- Dp	961811100	OSTATNO	
(1	-6.0	3597	1125	-2	1007	0	4720	1007	4.69
B	Ũ	-10.0	801	6275	1250	11345	419	8326	10926	0.76
Õ	①	-20.0	4583	6750	7294	28500	8369	18627	20131	0.93
©	1	-33.0	12153	9675	13850	65640	33086	35578	32555	1.09
E)	2	-10.0	5379.	2375	1250.	4872	4∤9	9004	4453	2.02
Ō	2	-20.0	9894	4200	7.520	19192	8029	21614	11163	1.94
()	3	-33.0	18083	7237	13000	48288	33949	38320	14339	2.67
(I)	3	-10.0	5803	4375	17.60	130.72	682	11938	12390	0.96
(3	-20.0	11803	5050	5200.	32272	8600	22053	23672	0,93
Ŕ	<u>3</u>	-33.0	17061	8962	13000	7.23t8	33949	39023	38369	1.02

GENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 39

<u>NOTES</u>

♦ -- ANGLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION, P.S.F.

▼-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE WEDGE

B -- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE MEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA AND VICINITY
HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL
TEMPORARY COFFERDAM

STABILITY ANALYSIS

STA. 64+00 TO STA. 90+50 WEST SIDE U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS

JUNE 1988 FILE NO. H-2-30290

EAST WALL NORMAL OPERATING CASE

VERTICAL & LATERAL EARTH PRESSURE

E1.17.5 (51) E1.-5.0 7 +60 25 Av. 625 NOTE: PW ACTS ON BOTH SIDES OF THE WALL

EAST WALL LOW WATER OPERATING CASE VERTICAL & LATERAL EARTH PRESSURE

WEST WALL UNWATERED CASE VERTICAL & LATERAL EARTH PRESSURE

WEST WALL NORMAL OPERATING CASE VERTICAL & LATERAL EARTH PRESSURE

	YPCF	Ko
СН	110	0.8
SP	122	0.5
SI	92	0.4

ALL PRESSURES ARE GIVEN IN UNITS OF PS.F. LOW WATER OPERATING CONDITION IS EL.-5.0 UNWATERED CONDITION IS EL. 5.0

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO.19 GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

LATERAL EARTH PRESSURES

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS

FILE NO H-2-30290

SCALE: I"=20'

10	0	10	20	30
5				

(1) Assumptions: Line Source, Artesian Flow Fully Penetroting
Infinite Line of Wells

Aguifer 1 (ML/SM) E1.-8.0 to E1.-20.0

Aguifer 2 (SM/SP) E1.-32.0 to E1.-42.0

Transformation:

 $d_1 = 12' \sqrt{\frac{K_{K_1}}{K_{V_1}}} = 24'; d_2 = 10' \sqrt{\frac{60\pi}{K_{V_2}}} = 20'$ (E-1) $K_1 = K_2 = \sqrt{\frac{K_1}{K_1}} = \sqrt{\frac{(109\pi10^{-2})(27\pi10^{-2})}{(27\pi10^{-2})}} = 0.00543 \text{ cm/sec}$

Wellpoints Drowdown to El.-18.0; Hurricone Stage El.+9.0 Aquifer 1 El.+2.0 Aquifer 2

ASSUMING ON equivalent continuous slot

Aguifer | H=29' he-h0.2' V=15' r_w . 479 D=24' H-hw=28'

R= C(H-hw) \sqrt{K} = 3(28') $\sqrt{54.3}$ = 620' Fig. 4-23 Eq. 1

K=01069 fpm q=15'

ASSUMING 15' Spacing between Wellpoints

Qw= $\frac{KD_0}{L}$ (H-he) = $\frac{(.01069 \times 24^4 \times 15^4)(29-2^4)}{620'}$ = .168 cfm Fig.4-1 Eq. 1

Ahw = $\frac{Qw}{2\pi KD}$ $\ln \left(\frac{q}{2\pi r_w}\right) = \frac{(.168)}{2\pi (.01069 \times 24^4)} \ln \left(\frac{15^4}{2\pi (.01069 \times 24^4)}\right) \ln \left(\frac{15^4}{2\pi (.01069 \times 24^4)}\right)$

Aguifer 2 $H \cdot 44'$ hc = hD = 24' $V \cdot 15'$ rw = .479 $D \cdot 20'$ H - hw = 25' K = .01069 fpm = q = 15' R = C(H - hw)VK = 3(25')V54.3 = 553 Fig. 4 - 23 Eq. 1 $Qw = \frac{(1 - hw)}{L} = \frac{(.0069)(20'X15')(44 - 24')}{L} = 0.113cfm$ Fig. 4 - 10

Qw TOTAL = 0.167 cfm + 0.116 cfm = .283 cfm

Ahw = total = . 14'+ . 167' = . 31'

Head loss in Wellpoints

Hw = He + Hs + Hr + Hv Fig 4-25

Assuming 3 ft. screen

HW= 0 Due to Low Flow

M = V + he - Dhw-Hw

M= 15+2'-.31' = 16.69' Set header no higher than El. -3.31

M=15+24'-31'=38.69 " " E1.-3.31

SUMMARY

Use F.S. = 1.25 Then 15' = 12', Use 12' Spacing Between Wellpoints

Headers Elevation: El.-4.0

Tip Elevation: El.-42.0

3 Ft. Screen with 5" Filter from El.-8.0 to El.-20.0

and from El.-52.0 to El.-42.0

1.5" Wellpoint

Reference TM 5-818-5 Nov. 1983
* Field Pumping Test DDM No. 8 Rigolets Lock 1969

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL

DEWATERING SYSTEM

U. S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS

JUNE 1988

FILE NO. H-2-302

GENERAL NOTES: CLASSIFICATION. STRATIFICATION. SHEAR STRENGTH. AND UNIT WEIGHT OF THE SOIL HERE BASED ON THE RESULTS OF UNDISTURBED BORINGS - SEE BORING DATA PLATE 40

NOTE:

V-V PH LINE IN STRATA & AND 5 V-V PH LINE IN STRATUM &

STRATUM	80IL	EFFEC	TIVE	c -	UNIT COHES	ION - P-8.	F.	FRICTION
		UNIT NT	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	RNOLE
NO.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT . 2	DEOREES
(I)	(WATER)	62.5	62 - 5	0.0	0.0	0.0	0.0	0.0
2	(CH)	100.0	100.0	200.0	200-0	200.0	200.0	0.0
3	(ML)	117-0	117.0	200.0	200.0	200.0	200.0	15.0
4	(CH)	98.0	98.0	300.0	300.0	300.0	300.0	0.0
⑤	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0
(6)	(CH)	106-0	106.0	60C-0	600.0	600.0	600-0	0.0
7	(CH)	108.0	108-0	935.0	935.0	950.0	950.0	0.0
③	(ML)	117-0	117-0	200.0	200.0	200.0	200-0	15.0
3	(CH)	110.0	110.0	995.0	995.0	1020.0	1020.0	0.0

	ASSUMED FAILURE SURFACE		RES	ISTING	FORCES		VING CES		SUMMATION OF FORCES		
PRII NO	,	ELEY.	Ra	R ₈	R,	Da	-0,	RESISTINO	ONIVINO	SAFETY	
®	1	-41.0	20140	32400	36172	102795	38275	88712	64520	1.37	
®	<u>0</u>	-53.0	34539	30600	50258	168657	82402	115397	84255	1.37	
Ö	<u>(1)</u>	-60.0	47629	37298	63347	211008	114374	148274	96634	1.53	
<u>o</u>	①	-64.0	53808	41622	69456	238799	134032	164886	104767	1.57	
Ē	=	-\$0.0	7027	14700	3436	12438	1485	25163	10953	2.30	
Ē	Õ	 -32.0	11207	10500	10631	38158	16267	32338	21891	1.48	

NOTES_

- . -- ANOLE OF INTERNAL FRICTION. DEGREES
- C -- UNIT COMESION. P.S.F.
- ▼-- STATIC WATER SURFACE
- D -- HORIZONTAL DRIVING FORCE IN POUNDS
- R -- HORIZONTAL RESISTING FORCE IN POUNDS
- A -- AS A SUBSCRIPT, REFERS TO ACTIVE NEDGE
- B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK
- P -- AS A SUBSCRIPT. REFERS TO PASSIVE MEDDE

FRCTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION A'-A'

STRATUM	801L	EFFE	CTIVE	<u> </u>	UNIT CONCE	8.4 - MOI	F.	FRICTION
		TH TIME	P.C.F.	CENTER OF	BUTRATIS	BOTTON OF	STRATUM	RNOLE
HO -	!YPE	VERT. 1	VERT . 2	VERT. 1	VERT . 2	VERT. 1	VERT . 2	DEGREES
1	(CH)	110.0	110.0	400.C	400.0	4CO-0	400.0	0.0
2	(CH)	115.0	115.0	700.C	700.0	700.0	700.0	0.0
3	(CH)	112.0	112.0	600.0	600.0	600.0	800.0	0.0
<u>4</u>	(CH)	103.0	103.0	280.0	28C .C	28C . O	280.0	0.0
(5)	(ML)	117.0	117.C	200.0	200.0	200.0	200.C	15.0
6	(CH)	102.0	102.0	50C.0	500.0	500.0	500.0	0.0
<u> </u>	(SP)	122.C	122.0	0.0	0.0	0.0	0.0	33.0
③	(CH)	106.0	106.0	750.0	760.0	75C . 0	76C . O	0.0

	RESUMED FRILING SINFACE		RES	RESISTING FORCES			DRIVINO FORCES		SUMMATION OF FORCES		
FRII		ELEY.	R _a	R.	Rp	Da	D,	ON1191935	ONIVINO	SAFETY	
®	0	-20.0	23299	44498	3680	44237	2001	71477	42236	1.69	
B	$\tilde{0}$	-2C.C	15342	17332	9587	265GC	1836	37261	24724	1.51	
Õ	0	-35 .0	38005	4060C	18431	98043	23661	96936	74382	1.30	
o	0	-35.0	31473	1825C	18431	74154	2386:	65154	5C293	1.3C	
Ē	①	-42.0	4813C	80000	39895	131009	40788	147825	90223	1.64	
Ō	$\tilde{\mathbb{O}}$	-42.0	40802	22500	39895	1C4232	40786	102997	63446	1.62	

CLASSIFICATION. STRATIFICATION. SHEAR

STRENGTH, AND UNIT NEIGHT OF THE SOIL MERE BASED ON THE RESULTS OF UNCISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

... ANOLE OF INTERNAL FRICTION. DEGREES

C --- UNIT COHESION. P.S.F.

又-- STATIC HATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS A -- AS A SURSCRIPT, REFERS TO ACTIVE MECOE

8 -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- AS A SURSCRIPT, REFERS TO PASSIVE HEDGE

FACTOR OF SAFETY = $\frac{R_A + R_S + R_P}{D_A - D_P}$

LAKE PONTCHARTRAM , LA . AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION B'-B'

STRATUM	801L	EFFE	TIYE	c -	UNIT COHES	FRICTION		
		TH TIMU	P.C.F.	CENTER OF	STRRTUM	BOTTON OF	STRATUM	3.JOHR
MG .	TYPE	YERT . 1	VERT - 2	VERT- 1	VERT. 2	VERT- 1	VERT. 2	DEGREES
1	(WATER)	62 - 5	62 - 5	0.0	0.0	0.0	0.0	0.0
②	(CH)	115-0	115-0	700-0	700-0	700-0	700-0	0.0
3	(CH)	112.0	112.0	600.0	600-0	600-0	800-0	0.0
④	(CH	109.0	109.0	280-0	280.0	280-0	280-0	0.0
<u>(9</u>)	· (ML)	117-0	117-0	200-0	20C-0	200-0	200.0	15-0
(9)	(CH)	102.0	102.0	500.0	500.0	500-0	500.0	0-0
7	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

ASSU		RESI	STING F	ORCES	DR I FOR	/INO SUMMATION CES OF FORCES			FACTOR OF
HO.	ELEY.	R _a	R∎	Rp	Da	-Dp	ONITRIPES	OKIVINO	SAFETY
® ①	-8.0	17531	10548	2099	19619	1911	30178	17708	1.70
\bullet	-20.0	26527	15991	8745	47194	14437	51263	32767	1.56
(Ö)	-35.0	38858	16000	23037	103674	5158G	77895	51994	1.50

QENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENGTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS. SEE BORING DATA PLATE 40

NOTES

• -- ANOLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION. P.S.F.

V-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SUBSCRIPT. REFERS TO ACTIVE HEODE

8 --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE MEDGE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAN, LA . AND VICINITY

HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS

DREDGED BYPASS CHANNEL
U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS

CORPS OF ENGINEERS
E 1988 FILE NO. H-2-30290

STRATUN	LIGS	EFFE	SATLE	£ -	UNIT COHES	ION - P-8	F.	FRICTION RNOLE	
		TH TIMU	P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUM		
NO.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES	
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	115.0	115.0	700.0	700 -0	700.0	700.0	0.0	
3	(CH)	112.0	112.0	600.0	600-0	600.0	600.0	0.0	
4	(CH)	103.0	103.0	280.0	280.0	280-0	280.0	0.0	
(E)	(ML)	117.0	117.0	200.0	200.0	200.0	200-0	15-0	
6	(CH)	102.0	102.0	500.0	500-0	500.0	500.0	0-0	
7	(SP)	122.0	122.0	0.0	0-0	0.0	0.0	33.0	
⊕	(CH)	106.0	106.0	760.0	750.0	750.0	750.0	0-0	

RESUNED		RES	ISTING	FORCES		DRIVING FORCES		SUMMATION OF FORCES	
FAILURE NO-	ELEY.	R _s	R _B	Rp	Da	Dp	REGIGTINO	DRIVING	SRFETY
® (1) -8.0	13120	18132	209	12245	10	31461	12235	2.57
® (21993	35920	4528	38751	2450	62441	36301	1.72
© (1		36112	33000	19368	93821	26265	88480	67556	1.31
(D) (I	-42.0	46782	46500	43533	127931	44885	136815	82446	1 -66

GENERAL NOTES: CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40.

NOTES

-- ANGLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION. P.S.F.

▼-- STRTIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE HEDDE B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE WEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION C'-C'

STRATUM	801L	EFFE	JIYE 3VIT	ε -	UNIT COHES	ION - P.6	F.	FRICTION
		UNIT NT	P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUM	ANOLE
ж.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEGREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	103.0	103.0	280.0	280.0	280.0	280.0	0.0
3	(ML)	117-0	117.0	200.0	200.0	200.0	200.0	15.0
④	(CH)	102 -0	102.0	500.0	500.0	500.0	500.0	0.0
⟨5 ⟩	(SP)	122.0	122.0	0-0	0.0	0.0	0.0	33.0
6	(CH)	106.0	106.0	750.0	750.0	750.0	750.0	0.0

RESUNED		RES	ISTING	FORCES	DRIVING FORCES		SUMMATION OF FORCES		FACTOR	
<u>Failu</u> No .		ELEV.	R _R	R _B	Rp	D _R	-D,	ONITRIBES	ORIVINO	SRFETY
®	①	-8.0	4294	13707	1408	10261	417	19409	9844	1.97
=	_	-20.0	10953	33482	4690	35108	2719	49125	32389	1.52
_	Ξ.	-35.0	25528	35000	19370	87797	26441	79898	61356	1.30
<u></u>	_	-42.0	34175	51000	43085	120796	44385	128260	76411	1.68

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENOTH, AND UNIT MEIOHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINOS, SEE BORINO DATA PLATE 40

NOTES

LAKE PONTCHARTAMM, LA AND VICINITY
HIGH LEVEL PLAN

DESIGN MEMORANDUM NO.19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS
SECTION D-D

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS
CORPS OF ENGINEERS
JUNE 1988

NOTE: V-V PH LINE IN STRA	ATUM 5
2 - 2 PH LINE IN STRA	TUM 7

STRRTUM	SOIL	EFFE	STIVE	c -	C - UNIT CONESION - P.S.F.					
•		UNIT NT	P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUN	RNOLE		
ж.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	YERT. 2	DEOREES		
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0		
2	(CH)	110.0	110.0	400.0	400.0	400-0	400.0	0.0		
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0		
④	(CH)	103.0	103.0	280.0	280.0	280.0	280.0	0.0		
⑤	(ML)	117.0	117.0	200.0	200.0	200.0	200.0	15.0		
⑥	(CH)	102.0	102.0	500.0	500.0	£00 •0	E00 • 0	0.0		
7>	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0		

AGGU		RES	STING	FORCES		VING RCE8	SUMM!		FACTOR OF
HO.	ELEY.	R _B	R _B	Rp	Da	-Dp	MESTSTING	0817190	SAFETY
® ①	-8.0	15179	#189	9920	21093	7843	29288	13250	2.21
	-20.0	23256	9540	20999	53852	31839	53794	22213	2.42
© ①	-35.0	35476	15000	36173	114376	83387	86649	30989	2.80

DENERAL NOTES: CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT MEIGHT OF THE SOIL MERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

♦ -- ANGLE OF INTERNAL FRICTION. DEGREES C -- UNIT COHESION. P.S.F.

▼-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE HEDDE

B -- AS R SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE MEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICHNITY HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION C-C

RATUH	SOIL	EFFE	3411	c -	UNIT COHES	10H - P.S.	F	FRICTION
		TH TIMU	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	ANOLE
NC -	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT . 2	VERT . 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110-0	400.0	400.0	400-0	400.0	0.0
<u>3</u>	(CH)	112.0	112-0	600.0	600.0	600.0	600.0	0.0
<u>₹</u>	(CH)	103.0	103.0	280.0	280.0	280.0	280.0	0.0
<u></u>	(ML)	117-0	117-0	200.0	200.0	200.0	200.0	15.0
6 >	(CH)	102.0	102.0	500.0	500.0	500.0	500.0	0.0
<u>7</u> >	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

AGSUMED FAILLINE SURFACE		RES	ISTING	FORCES		DRIVING FORCE8		SUMMATION OF FORCES	
110 ·	ETEA.	Ra	Ra	Rp	Da	-D,	OKITE1230	OKIVINO	SAFETY
® ①	-8.0	15406	23576	1539	20878	527	40521	20349	1.99
® ①	-8.0	9814	7249	1259	8510	418	18322	8092	2.26
Ö Ū	-20-0	25929	41381	5169	51765	9684	72479	42081	1.72
0 0	-20.0	18226	11878	5033	32025	9489	35137	22536	1.56
Ē ①	-35.0	40023	37500	19980	110368	45470	97503	64898	1.50
(f) (i)	-35.0	33845	14000	19858	85233	43418	67703	41815	1 .62

DENERAL NOTES: CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH. AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS . SEE BORING DATA PLATE 40

NOTES

• -- ANGLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COHESION. P.S.F.

▼-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT, REFERS TO ACTIVE WEDDE

B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT, REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_A - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO.19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION D-D

NOTE:	
NOTE: V-V PH LINE IN STRATUM	5
V-7 PH LINE IN STRATUM	7

STRATUM	STIL	EFFE	TIVE	c -	UNIT COHES	ION - P.S.	F.	FRICTION
		TH TIMU	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	RNOLE
NO.	TYPE	VERT. I	VERT. 2	VERT. 1	VERT. 2	VERT- 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110-0	400-0	400-0	400-0	400 -0	0.0
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0
4	(CH)	109.0	103.0	280.0	280.0	280.0	280.0	0.0
(E)	(ML)	117.0	117-0	200.0	200.0	200.0	200.0	15-0
B	(CH)	102.0	102.0	500.0	500.0	500.0	500.0	0.0
7	(SP)	122.0	122.0	0.0	0.0	0.0	0-0	33.0

RASUMED		RES	ONITE	FORCES		DRIVINO Forces		SUMMATION OF FORCES	
FAILURE MO.	ELEV.	R _{ff}	R _B	R _P	D _R	Dp	REGISTINO	ORIVINO	SAFETY
(A)	-8.0	10123	19880	3745	16587	4220	33748	12367	2.73
(1)	-20.0	18098	42906	8967	45458	19418	69971	26040	2.69
= =	~35.0	33362	46500	21648	105206	60173	101510	45033	2.25

GENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENGTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS. SEE BORING DATA PLATE 40

NOTES

 $\Phi ext{---}$ angle of internal friction, degrees

C -- UNIT COMESION, P.S.F. 又.... STATIC MATER SURFACE

D --- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SUBSCRIPT, REFERS TO ACTIVE HEDDE B -- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P --- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL
STABILITY ANALYSIS
SECTION F-F

STRRTUM	#BOIL	EFFE	SVITE	£	UNIT COHES	ION - P-6.	F.	FRICTION
		TH TIME	P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUM	ANOLE
MO -	TYPE	YERT. 1	YERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEDREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(CH)	110.0	110.0	400.0	400-0	400.0	400.0	0.0
3	(CH)	112.0	112.0	600.0	600.0	600.0	600.0	0.0
4	(CH)	103.0	109.0	280 0	280.0	280.0	280.0	0.0
(5)	(ML)	117-0	117-0	200.0	200.0	200.0	200.0	15.0
<u>(6)</u>	(CH)	102.0	102.0	500.0	500.0	500.0	500.0	0.0
<u>₹</u>	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

8660				RESISTING FORCES		DRIVING FORCES		SUMMATION OF FORCES	
FAILURE NO.	ELEY.	Ra	R∎	R _P	Da	-Dp	ONTESTSSE	OR14130	SAFETY
(9 (1)	-8.0	11608	22560	2024	13691	795	36192	12836	2.82
(B) (1)	-20.0	19608	39266	9799	40741	11902	68673	28839	2.38
Ö Ö	-35.0	34608	34500	22229	93913	48384	91337	47529	1.92

GENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH, AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS - SEE BORING DATA PLATE 40

NOTES

-- ANOLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION, P.S.F.

V-- STATIC MATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE MEDDE

B -- A6 A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P --- AS A SUBSCRIPT, REFERS TO PASSIVE HEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

> STABILITY ANALYSIS SECTION G-G

U.S. ARMY ENGINEER DISTRICT, NEW ORLEANS CORPS OF ENGINEERS

FILE NO. H-2-30290

TH LINE STRATUM 7	STRATUM	39YI	· UN
	ж.	TYPE	YER
LINE STRATUM 5		(WATER)	62 -
	2	(CH)	110
		40	$\overline{}$

STRATUM	80 I L	EFFE	TIVE	c -	UNIT COHES	ION - P-8.	F.	FRICTION	
		UNIT HT	P.C.F.	CENTER OF	STRATUM	BOTTOM OF	STRATUM	ANOLE	
HO -	TYPE	YERT. 1	VERT. 2	YERT 1	VERT - 2	VERT - 1	VERT . 2	DEOREES	
1	(WATER)	62 - 5	62 - 5	0.0	0.0	0.0	0.0	0.0	
2	(CH)	110.0	110-0	400-0	400-0	400-0	400-0	0.0	
3	(CH)	112.0	112.0	600-0	600-0	600.0	600-0	0.0	
<u>4</u>	(CH)	103.0	103-0	280-0	280-0	280-0	280-0	0.0	
(5)	(ML)	117.0	117-0	200.0	200-0	200-0	200-0	15.0	
6	(CH)	102.0	102-0	500.0	500.0	500.0	500.0	0.0	
7	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0	

RECU		R _B R _B R _P		FORCES	DRIVING FORCES		SUMMA OF FO	FACTOR OF	
FAILURE NO.	ELEY.	R _a	R _e	Rp	Da	- D.	DESIST INO	ONIVINO	SAFETY
(A)	-8.0	11607	23180	2198	13628	396	36985	13232	2.79
® ①	-20.0	17474	16806	6908	32742	10030	41187	22712	1.81
0 0	-35.0	35757	24000	21433	93671	45401	81190	48270	1.68

QENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENGTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS, SEE BORING DATA PLATE 40

NOTES

- -- ANGLE OF INTERNAL FRICTION. DEGREES
- C --- UNIT COHESION, P.S.F.
- 又-- STATIC WATER SURFACE
- D --- HORIZONTAL DRIVING FORCE IN POUNDS
- R --- HORIZONTAL RESISTING FORCE IN POUNDS
- A --- AS A SUBSCRIPT, REFERS TO ACTIVE HEDGE
- B --- RS A SUBSCRIPT. REFERS TO CENTRAL BLOCK
- P --- RS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{C_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY

HIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS
SECTION H-H

NOTE: V-V PH LINE	IN STRATA (2), 3 AND (4)
V-VIPH ZINE	

STRATUM	SOIL	EFFE	STIVE	c -	UNIT COHES	ION - P.6.	.F.	FRICTION
		TH TINU	P.C.F.	CENTER OF	STRATUM	BOTTOM_OF	STRATUM	ANOLE
MG.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEDREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(RIPRAP)	132.0	132.0	0.0	0.0	0.0	0.0	40.0
3	(\$1)	92.0	92.0	0.0	0.0	0.0	0.0	40.0
④	(ML)	117.0	117.0	200.0	200.0	200.0	200.0	15.0
₹\$	(CH)	98-0	98.0	300.0	300.0	300.0	300.0	0.0
€	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

ASSU FAILURE	MED SURFACE	RES	ISTING	FORCES		DRIVING FORCES		TION PRCES	FACTOR
MG.	ELEV.	R _A	R∎	R _P	Da	-D,	RESISTINO	DEITING	SAFETY
(A)	-9.0	3335	7268	5259	17395	5243	15862	12152	1.31
(A)	-9.0	3335	20935	193	17395	3835	24463	13580	1.80
(B) (1)	-20.0	12033	7200	12549	42814	22234	31782	20580	1.54
® ②	-20.0	12033	33000	8185	42814	18634	53218	24180	2.20
© Ū	-32.0	18935	7200	17887	83588	54157	44022	29431	1.50
© 2	-32.0	18935	30000	15237	83588	48447	64172	34141	1.88

OENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR
STRENGTH, AND UNIT WEIGHT OF THE SOIL
WERE BASED ON THE RESULTS OF UNDISTURBED
BORINGS. SEE BORING DATA PLATE 40.

NOTES

◆ --- ANDLE OF INTERNAL FRICTION, DEOREES

C --- UNIT COHESION, P.S.F.

又--- STATIC WATER SURFACE

D --- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A --- AS A SUBSCRIPT, REFERS TO ACTIVE MEDDE

B --- AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK
P --- AS A SUBSCRIPT, REFERS TO PASSIVE NEDDE

. . . .

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY HIGH LEVEL PLAN

HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION I-I

STRATUM	80 I L	EFFE	TIVE	c -	UNIT COHES	ION - P.8.	F	FRICTION
		UNIT NT	P-C-F.	CENTER OF	STRATUM	BOTTOM OF	STRATUM	ANOLE
NO.	TYPE	VERT. 1	VERT. 2	VERT- 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0-0	0.0	0-0	0.0
2	(RIPRAP)	132.0	132.0	0.0	0.0	0-0	0-0	40.0
3	(S1)	92.0	92.0	0-0	0-0	0-0	0.0	40.0
4	(ML)	117-0	117.0	200-0	200.0	200.0	200.0	15.0
⟨5 ⟩	(CH)	98-0	98.0	300.0	300.0	300.0	300.0	0-0
⊗	(8P)	122.0	122-0	0-0	0.0	0-0	0-0	33.0

ASSU		RES	ONITEL	FORCES		DRIVING FORCES		SUMMATION OF FORCES	
FAILURE NO -	ELEY.	R _R	R _B	Rp	D _a	-0,	RESISTINO	ONTYTHE	SAFETY
(A)	-9.0	5576	27408	1	12710	500	32985	12210	2.70
® ①	-20.0	13316	9600	11290	36290	14216	34206	22074	1.55
® · ②	-20.0	13316	29648	6504	36290	10540	49468	25750	1.92
Ō Ō	-32.0	18175	8400	17707	75185	42374	44282	32811	1.35
© ②	-32.0	18175	28500·	13656	75185	36104	60231	39081	1.54

<u>OENERAL NOTES:</u>
CLASSIFICATION. STRATIFICATION. SHEAR

STRENGTH. AND UNIT HEIGHT OF THE SOIL HERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES_

-- ANGLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION. P.S.F.

V-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE WEDDE

B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE HEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS

SECTION J-J

STRATUM	11.03	EFFE	TIVE	c -	UNIT_COHES	ION - P.S.	F.	FRICTION
		UNIT NT	P.C.F.	CENTER OF	STRATUM	BOTTON OF	STRATUM	ANGLE
NO.	TYPE	VERT. 1	VERT. 2	YERT. 1	VERT. 2	VERT. 1	VERT . 2	DEGREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
②	(RIPRAP)	132.0	132.0	0.0	0.0	0.0	0.0	40.0
3	(SI)	92.0	92.0	0.0	0.0	0.0	0.0	40.0
④	(ML)	117.0	117.0	200.0	200.0	200.0	200.0	15.0
⑤	(CH)	98.0	98.0	300.0	300.0	300.0	300.0	0.0
(8)	(SP)	122.0	122.0	0.0	0.0	0.0	0.0	33.0

Z-Z PH LINE IN STRATA 2,3,AND 4

RESU		RES	ISTING	FORCES		DRIVING FORCES		SUMMATION OF FORCES		
FAILURE NO.	ELEV.	R	R _B	R _P	Da	D _P	RESISTINO	ONIVINO	SAFETY	
(A)	-9.0	9177	10272	1529	12227	925	20978	11302	1.86	
(A)	-9.0	9177	16211	14	12227	504	25402	11723	2.17	
® ①	-20.0	18380	6000	8984	34853	12604	33364	22249	1.50	
® ②	-20.0	18380	21381	6398	34853	10389	46159	24464	1.89	
© Ū	-32.0	24399	6300	15761	73673	39746	46460	33927	1.37	
Ö Ø	-32.0	24399	22500	13556	73673	35906	60455	37767	1.60	

NOTES

▼-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

U -- HONIZUMINE DRIVING FORCE IN FOORDO

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A -- AS A SUBSCRIPT. REFERS TO ACTIVE WEDGE

B -- A6 A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE WEDGE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY
HIGH LEVEL PLAN

MIGH LEVEL PLAN

DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS
SECTION K-K

STRRTUH	80 IL	SFFE	TIVE	C - UNIT COME			
- TANION		UNIT NT	. P.C.F.				
ж.	TYPE	VERT. 1	VERT. 2	VERT. 1	VERT. 2		
1	(WATER)	62 - 5	62.5	0-0	0-0		
2	(RIPRAP)	132-0	132.0	0-0	0.0		
⟨3 ⟩	(\$1)	92-0	92.0	0.0	0-0		

V-V PH LINE IN STRATA (2), (3) AND (5)

STRRTUM	80 IL	SFFE	TIVE	C -	UNIT COHES	UN BOTTON OF STRATUM A	FRICTION	
		UNIT NT. P.C.F.		CENTER OF	STRATUM	BOTTON OF STRATUM		ANOLE
NO-	TYPE	VERT. 1	VERT. 2	VERT- 1	VERT. 2	VERT 1	VERT. 2	DEOREE8
(I)	(WATER)	62 - 5	62.5	0-0	0-0	0-0	0-0	0.0
2	(RIPRAP)	132-0	132.0	0-0	0.0	0-0	0.0	40.0
③	(\$1)	92.0	92.0	0-0	8-0	0.0	0.0	40.0
4	(CH)	100-0	10C-0	200.0	200.0	200.0	200.0	0.0
<u>₹</u>	(ML)	117-0	117-0	200-0	200.0	200.0	200-0	15.0
⑥	(CH)	98.0	98.0	300.0	300.0	300.0	300.0	0.0
7	(SP)	122-0	122 -0	0-0	0-0	0-0	0.0	33.0

AGGUNED		RESISTING FORCES				DRIVING FORCES		SUMMATION OF FORCES		
FRI		ELEY.	Ra	R _B	R₽	D _a	-Dp	ON179189R	DRIVINO	SAFETY
®	1	-20.0	18797	13519	8364	36101	12101	40670	24000	1.69
®	②	-20.0	18797	22915	7046	36101	10763	48758	25338	1.92
®	<u>③</u>	20.0	18797	32620	4980	36101	9412	58297	26889	2.11
⑧	0	-32.0	24399	12300	15159	73673	39077	51858	34596	1.50
⑧	<u>@</u>	-32.0	24399	22500	14243	73673	36713	61142	36960	1.65
B	<u>3</u>	-32.0	24398	33900	12058	73673	33656	70367	40017	1.76

QENERAL NOTES: CLASSIFICATION. STRATIFICATION. SHEAR STRENGTH. AND UNIT HEIGHT OF THE SOIL MERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

-- ANOLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COHESION. P.S.F.

V-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R -- HORIZONTAL RESISTING FORCE IN POUNDS

A .-- AS A SUBSCRIPT. REFERS TO ACTIVE WEDDE B AS A SUBSCRIPT, REFERS TO CENTRAL BLOCK

P --- AS A SUBSCRIPT. REFERS TO PASSIVE WEDDE

FACTOR OF SAFETY = $\frac{R_A + R_B + R_P}{D_R - D_P}$

LAKE PONTCHARTRAM, LA. AND VICINITY

HIGH LEVEL PLAN DESIGN MEMORANDUM NO. 19 GENERAL DESIGN

ORLEANS AVENUE OUTFALL CANAL

STABILITY ANALYSIS SECTION L-L

NOTE:	V-V PH	LINE	IN	STRATA (Z), (3), AND (5)
	27-27 PH	LINE	IN	STRATUM (7)

STRATUM	SCIL	EFFE	STIVE	ε -	UNIT CCHE	310N - P.S.	.F.	FRICTION
		UNIT NT	. P.C.F.	CENTER OF	STRATUH	BOTTON OF	STRATUM	RNOLE
NO.	NO. TYPE	VERT. 1	VERT- 2	VERT. 1	VERT. 2	VERT. 1	VERT. 2	DEOREES
1	(WATER)	62.5	62.5	0.0	0.0	0.0	0.0	0.0
2	(RIPRAP)	132-0	132-0	0-C	0.0	0.0	0.0	40-0
3	(SI)	92-0	92-0	0-0	0.0	0.0	0.0	40-0
4	(CH)	100-0	100-0	200.0	200.0	200.0	200-0	0.0
₹	(ML)	117-0	117-0	200.0	200.0	200.0	200.0	15.0
(8)	(CH)	98-0	98-0	300.0	300-0	300.0	300.0	0.0
7	(CH)	122-0	122-0	0.0	0.0	0-0	0.0	33.0

RESUMED FRILURE SURFACE NO. ELEY.		RESISTING FORCES			DRIVING FORCES		SUMMATION OF FORCES		FACTOR
		R _B	R ₃	R _P	D _a	-0,	MESISTINO	ONIVING	SAFETY
® ①	-20.0	13316	9600	11287	36290	14216	34203	22074	1.55
(A)	-20.0	13316	28017	7347	36290	11192	48680	25098	1.94
(B) (1)	-32.0	18175	7500	17827	75185	43034	43502	32151	1.35
B ②	-32.0	18175	13200	17050	76185	41358	48425	33827	1.43
B 3	-32.0	18175	17700	16099	76185	40585	51974	3460C	1.50
(B) (4)	-32.0	18175	26700	14244	75185	37273	59119	37912	1.56
(B) (S)	-32.0	18176	37500	12180	75185	35257	67855	39928	1.70

GENERAL NOTES:

CLASSIFICATION, STRATIFICATION, SHEAR STRENGTH. AND UNIT WEIGHT OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATE 40

NOTES

→ -- ANOLE OF INTERNAL FRICTION. DEGREES

C -- UNIT COMESION. P.S.F.

▼-- STATIC WATER SURFACE

D -- HORIZONTAL DRIVING FORCE IN POUNDS

R --- HORIZONTAL RESISTING FORCE IN POUNDS

A .-- AS A SUBSCRIPT. REFERS TO ACTIVE WEDDE B --- AS A SUBSCRIPT. REFERS TO CENTRAL BLOCK

P -- AS A SUBSCRIPT. REFERS TO PASSIVE MEDDE

FACTOR OF SAFETY = $\frac{R_B + R_B + R_P}{D_B - D_P}$

LAKE PONTCHARTRAIN, LA. AND VICINITY HIGH LEVEL PLAN

DESIGN MEMORANDUM NO.19 GENERAL DESIGN

ORLEANS AVENUF OUTFALL CANAL

STABILITY ANALYSIS SECTION M-M

PLATE 97

UNIFIED SOIL CLASSIFICATION

MAJOR	DIVISION	TYPE	LETTER SYMBOL		TYPICAL NAMES
<u>د</u> د	2 . 4	CLEAN GRAVEL	GW	00	GRAVEL, Well Graded, gravel-sand mixtures, little or no fines
SOILS	ELS half	(Little or No Fines)	GP	"	GRAVEL, Poorly Graded, gravel-sand mixtures, little or no fines
5	GRAVELS More than half of coarse fraction is larger than No.4 sieve size	GRAVEL WITH FINES (Appreciable Amount of Fines) CLEAN SAND (Liftle or No Fines) SANDS WITH FINES	GM		SILTY GRAVEL, gravel-sand-silt mixtures
- GRAINE	GR. More 11 coarse larger 1:eve		GC	*	CLAYEY GRAVEL, gravel - sand - clay mixtures
	7 0 4 0 W		SW		SAND, Well - Graded, gravelly sands
	SANDS than half te fraction ter than No		SP		SAND, Poorly - Graded, gravelly sands
COARSE	SANDS More than he coorse fracti smaller than		SM		SILTY SAND, sand-silt mixtures
¥ 5	More coors smold	(Appreciable Amount of Fines	SC	%	CLAYEY SAND, sand-clay mixtures
SOILS material		SILTS AND CLAYS (Liquid Limit < 50)	ML	Ш	SILT & very fine sand, silty or clayey fine sand or clayey silt with slight plasticity
			CL		LEAN CLAY, Sandy Clay, Silty Clay, of low to medium plasticity
FINE - GRAINED More than half the is smaller than Ni			OL		ORGANIC SILTS and organic silty clays of low plasticity
GRAINED on half the		SILTS AND CLAYS (Liquid Limit > 50)	МН	\prod	SILT, fine sandy or silty soil with high plasticity
FINE GR More than is smaller sieve size	•		CH		FAT CLAY, inorganic clay of high plasticity
FINE More			ОН		ORGANIC CLAYS of medium to high plasticity, brganic silts
нібн	LY ORGANIC	SOILS	Pt		PEAT, and other highly organic soil
wood			Wd		WOOD
SHELLS			SI	3,33	SHELLS
NO SAMPLE					
				\sqcup	
			<u> </u>	Н	

NOTE: Soils possessing characteristics of two groups are designated by combinations of group symbols

DESCRIPTIVE SYMBOLS

COLOR	CONSISTENCY									MODIFICATIONS						
COLOR	SYMBOL	11			- 1	FOR COHESIVE SOILS								MODIFICATION	SYMBOL	
TAN	T	CONCICTENCY			, c	COHESION IN LBS./SQ.FT. FROM SYMBOL							Traces	Tr-		
YELLOW	Y	CONSI	CONSISTENCY		U	UNCONFINED COMPRESSION TEST							STMBOL	Fine	F	
RED	R	VERY	so	FT				< 2	50					v S o	Medium	M
BLACK	ВК	SOFT					25	0 - 5	00					So	Coarse	С
GRAY	Gr	MEDIU	М				50	0 - 1	000					М	Concretions	cc
LIGHT GRAY	IGr	STIFF					100	0 - 2	000					St	Rootlets	rt
DARK GRAY	dGr	VERY	ST	IFF			200	0 - 4	000					v St	Lignite fragments	1g
BROWN	Br	HARD						> 4	000					Н	Shale fragments	sh
LIGHT BROWN	IBr														Sandstone fragments	sds
DARK BROWN	dBr	× 6	0					· -				T		7	Shell fragments	slf
BROWNISH-GRAY	br Gr	NOEX		ا 4	i	'				_/	r I	ر ↓	<u>/</u>		Organic matter	0
GRAYISH - BROWN	gy Br	=		i		i			/	CH	1		ľ	1	Clay strata or lenses	CS
GREENISH - GRAY	gnGr	≿₄	ol		+			! 	/-	, 	-	<u></u>	 		Silf strata or lenses	SIS
GRAYISH - GREEN	gy Gn	ASTICITY	- 1	į,	1	CL		1/	1.	Line	ľ		1	İ	Sand strata or lenses	SS
GREEN	Gn	<u>E</u>	ŀ	 	I				- 10		+	<u></u>	<u>-</u> -	1	Sandy	S
BLUE	ВІ	و 😽 📗	0	1			/	ر ـ ـ ـا	/	i -	ОН	I +	<u> </u>]	Gravelly	G
BLUE- GREEN	BI Gn	ਛੱ'		CL-	MLa					1	8. MH	1	i 1		Boulders	В
WHITE	Wh		-		-7	Z	/_	OL_	<u></u>	<u> </u>	IN I	<u> </u>	<u> </u>	4	Slickensides	SL
MOTTLED	Mot	ه اا	١.		y hii		,	ML	1	1	i	1	i		Wood	Wd
		11	0,1		2	0		10		0		30	1	_ 00	Oxidized	O×
			_	•	-	-		-	מוט ב	-						

For classification of fine - grained soils

NOTES:
FIGURES TO LEFT OF BORING UNDER COLUMN "W OR DIO"
Are natural water contents in percent dry weight
When underlined denotes D ₁₀ size in mm.**
FIGURES TO LEFT OF BORING UNDER COLUMNS "LL" AND "PL"
Are liquid and plastic limits, respectively
SYMBOLS TO LEFT OF BORING
▼ Ground - water surface and date observed
© Denotes location of consolidation test * *
S Denotes location of consolidated - drained direct shear test * *
R Denotes location of consolidated - undrained triaxial compression test **
O Denotes location of unconsolidated-undrained triaxial compression test **
Denotes location of sample subjected to consolidation test and each of the above three types of shear tests **
FW Denotes free water encountered in boring or sample
FIGURES TO RIGHT OF BORING
Are values of cohesion in lbs./sq. ft. from unconfined compression tests
In parenthesis are driving resistances in blows per foot determined with a standard split spoon sampler (1 $\frac{3}{6}$ " I.D., 2"O.D.) and a 140 lb. driving hammer with a 30" drop
Where underlined with a solid line denotes laboratory permeability in centimeters per second of undisturbed sample
Where underlined with a dashed line denotes laboratory permeability in centimeters per second of sample removided to the estimated natural void ratio

- * The D_{10} size of a soil is the grain diameter in millimeters of which 10% of the soil is finer, and 90% coarser than size D_{10} .
- **Results of these tests are available for inspection in the U.S. Army Engineer District Office, if these symbols appear beside the boring logs on the drawings.

GENERAL NOTES:

While the borings are representative of subsurface conditions at their respective locations and for their respective vertical reaches, local variations characteristic of the subsurface materials of the region are anticipated and, if encountered, such variations will not be considered as differing materially within the purview of clause 4 of the contract.

Ground-water elevations shown on the boring logs represent ground-water surfaces encountered in such borings on the dates shown. Absence of water surface data on certain borings indicates that no ground-water data are available from the boring, but does not necessarily mean that ground water will not be encountered at the locations or within the vertical reaches of such borings.

Consistency of cohesive soils shown on the boring logs is based on driller's log and visual examination and is approximate, except within those vertical reaches of the borings where shear strengths from unconfined compression tests are shown.

SOIL BORING LEGEND

4	2-10-84	2nd Pers. General Hotes Revised	LMNED-65 Let. deted 12 Dec . 83
3	5 - 3 - 71	ADDED UPPER LIMIT LINE (P4:09+LL-8)) ON PLASTICITY CHART	LMVED G LETTER D'T D 29 APRIL 1971
z	6-0-64	SYMBOL FW, NOTE REVISED	ORAL FROM L M V C G 5 JUME 1964
1	9-17-63	ST PAR OF GENERAL NOTES REVISED	L M V 2 WULTIPLE LETTER, DATED 5 SEPT, 963
REVISION	DATE	DESCRIPTION	8 Y

U S ARMY ENGINEER DISTRICT, NEW ORLEANS

CORPS OF ENGINEERS

FILE NO. H-2-21800

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO.19, GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

APPENDIX A

- A-1 ENVIRONMENTAL ASSESSMENT FONSI
- A-2 U.S. FISH AND WILDLIFE COORDINATION ACT LETTER
- A-3 LETTER CITY OF NEW ORLEANS DEPT. OF STREETS

ENVIRONMENTAL ASSESSMENT - FONSI

Environmental Assessment

Lake Pontchartrain, Louisiana, and Vicinity
Hurricane Protection Project, Orleans Avenue
Outfall Canal,

INTRODUCTION

The Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection project was initially authorized by Public Law 89-298, 27 October 1965 as a "barrier" plan of hurricane protection. An environmental impact statement (EIS) was prepared on the original project and filed with the Council on Environmental Quality in January 1975. Subsequently a court ordered reevaluation was undertaken. The resultant reevaluation recommending a high level plan of hurricane protection was addressed in Supplement I to the final environmental impact statement (FEIS) filed with the Environmental Protection Agency in December 1984. The approval of the high level plan was granted in 1985 with the signing of the Record of Decision.

However, at the time the FEIS was prepared, the designs for providing hurricane protection for the lakefront outfall canals were unresolved. Presently, the high level plan of hurricane protection is under construction and the design for the protection at the Orleans Avenue Outfall Canal is completed.

This Environmental Assessment (EA) will evaluate two alternative methods of providing hurricane protection to the Orleans Avenue Outfall Canal. The U.S. Army Corps of Engineers (Corps) is recommending protection utilizing a "butterfly valve" structure while the local assurers (Orleans Levee Board) desire to build a system of parallel protection by raising the existing levees adjacent to the canal.

NEED

The Orleans Avenue Outfall Canal provides interior drainage for the City of New Orleans by moving water from the central city to Lake Pontchartrain. Protection from hurricane-induced tidal inundation via the lake/canal connection is presently achieved by locally-constructed parallel protection levees adjacent to the canal. The existing levees along the canal do not meet the design height or sectional stability required for the Lake Pontchartrain project under either the previously authorized barrier

or the more recently authorized high level plan. Since the portion of New Orleans adjacent to the canal is well below sea level, protection from a hurricane surge overtopping the levee is necessary to eliminate the risk of interior flooding.

PROJECT DESCRIPTION AND LOCATION

The project area is located in southeastern Louisiana on the south side of Lake Pontchartrain in Orleans Parish (Plate 1).

Hurricane Protection for the Orleans Avenue Outfall Canal can be achieved by two basic concepts. One concept is to provide fronting protection at or near the lakefront end of the canal. This fronting protection structure would have a specialized "butterfly" type valve. structure consists of four 28 x 16-foot gated bays that automatically open or close as the flow changes. As long as the direction of flow is toward the lake, the gate would remain open. During a hurricane event, when the lake elevation rises enough to reverse the direction of flow, the gates would automatically close. This structure and appurtenant floodwall would be connected to the existing lakefront levee so that once closed, a continuous line of protection could be achieved. A cofferdam would be built in the canal so the closure could be constructed in the dry. A bypass would be built around the cofferdam so flows would not be interrupted. This is the plan that is recommended by the Corps because it is the most cost effective way to provide hurricane protection, can be designed to fully accomodate interior drainage, and would be the least disruptive method to protect areas behind the levees.

A second concept requires upgrading the existing lateral protection provided by levees paralleling the 2.6-mile the canal on either side. This plan would require bridges at Robert E. Lee Boulevard, Filmore Street, and Harrison Avenue to be modified or floodproofed since their respective deck elevations are below grades required to achieve project protection. Means to achieve positive closure at pumping station number 7, located at the

southern end of the canal, must be incorporated into this plan. Both plans will be addressed in this EA., however, the parallel protection plan is the choice of the Orleans Levee Board and most likely to be constructed.

Any borrow material required for use in conjunction with either alternative would be taken from the Corps-approved borrow site in the Bonnet Carre' Spillway.

SIGNIFICANT RESOURCES

The following resources are considered significant because of their ecological, esthetic, or cultural attributes and their institutional, technical, or public recognition.

ENVIRONMENTAL SETTING

FISH AND WILDLIFE RESOURCES

Existing Conditions

The Orleans Avenue Outfall Canal is a man-made canal approximately 2.6 miles in length, with average bottom and top widths of 100 to 160 feet, paralleled by a levee on the entire east side, by a floodwall on the west side between the pumping station and Robert E. Lee Boulevard, and by a levee on the west side near the lake. The canal is oriented in a north/south direction between Lake Pontchartrain and Interstate 10 (see Plate 1). The existing levee is frequently mowed. Predominant vegetation on the levee and adjacent rights-of-way includes perennial grasses, herbs, ornamental shrubs, and various trees including pine, hackberry, and oak. Due to human disturbance and vegetative structure, the levee and surrounding rights-of-way do not provide high quality wildlife habitat. Some use of shrubs and trees by squirrels and songbirds occurs. The canal is lined in some areas with marsh grasses, which provide limited cover,

feeding, and resting habitat for various songbirds, seabirds, and some ducks. Least terms and seagulls are commonly seen feeding on the canal.

The water quality in the Orleans Avenue Outfall Canal is generally poor; therefore, the canal has minimal value as habitat for fishery resources. The canal itself receives pumped storm water runoff from Metropolitan New Orleans. Typical contaminants present in the canal include oils, other petroleum hydrocarbons, pesticides, fertilizers, heavy metals, salts, combustion hydrocarbons and acids, plasticizers, oxygendemanding waste, sediment, and raw domestic sewerage (Schurtz and St. Pe' 1984). Organic chemicals and heavy metals are the toxicants of most concern which affect aquatic life in the canal and nearshore vicinity.

The nearshore lake area adjacent to the canal provides moderate value nursery and feeding habitat for estuarine-dependent commercial and sport finfishes and shellfishes. Some fishery use of the canal exists. The marsh grasses that fringe portions of the canal provide nursery habitat. Due to the poor water quality, the benthos of the canal is limited to worms, blue crabs, clams, and gastropods. The benthic community is more diverse near the lake. Most benthic species in the area are tolerant of prolonged periods of low dissolved oxygen and are not the benthics primarily utilized as fish food organisms by economic and commercially important fish species.

Future Without Project

Fish and Wildlife resources would remain as they are at present.

Butterfly Valve Alternative Impacts

Placement of this structure would result in the loss of 3 acres of marginal benthic habitat associated with the canal bottom. During fill placement associated with structure installation, organisms such as crabs would be able to escape burial, while most sessile or slow moving organisms

such as clams would be lost. Turbidities associated with the fill placement would result in temporary reductions in primary production. Water quality within the project area would be adversely affected due to increase in turbidity, reductions in dissolved oxygen, and resuspension of contaminated sediments in the water column. There would be only minimal temporary interference with normal canal/lake interchange during the period of construction. Various estuarine fish species inhabiting this aquatic environment have the mobility to avoid the direct adverse impacts; however, the localized benthic and planktonic food supplies would be temporarily reduced.

Secondary, indirect impacts may result near the canal mouth and adjacent nearshore waters of Lake Pontchartrain. Increases in turbidity accompanied by decreased oxygen associated with the construction may be encountered by various aquatic species including shrimp, crab, drum, and flounder that use these nearshore waters for limited feeding and nursery areas.

Terrestrial impacts associated with the alternative are minimal and would involve the loss of approximately 0.13 acres of upland developed area adjacent to the Orleans Avenue Outfall Canal south of Lakeshore Drive. The impacted area is primarily grassed levees which provide minimal wildlife usage.

Placement and handling of any contaminated dredged material from the canal bottom could cause potential sources of pollution if not contained in a properly secured site. If this alternative is chosen, a Section 404(b)(1) Evaluation will be prepared to address these concerns.

Parallel Protection Alternative Impacts

Approximately 15 acres of low value wildlife habitat including
162 trees (45 of which are oaks) would be impacted by degrading, earth
moving, and shaping operations. The loss of mature trees would remove them

from the ecosystem until the replacement trees mature. Ten young oaks would be planted for every mature tree taken. Three young pines would replace each mature pine. The new levee would provide habitat similar to the existing levee.

Temporary displacement of habitat for songbirds and tree dwelling animals would occur in association with tree removal. While these trees will be replaced, habitat in the immature trees would be of only moderate value for some species. This impact would only be short term. In the long term, habitat for tree dwellers would be increased.

In addition, approximately 2 acres of marsh grass and associated fishery habitat would be affected by degrading and upgrading the existing levee. Runoff during construction would slightly increase turbidity in the canal and the amount of airborne dust in the project area. Once the levee becomes vegetated, this impact would be eliminated.

ENDANGERED SPECIES

Existing Conditions

No threatened or endangered species or their critical habitat is found in the project area.

Future Without and Both Alternatives

No impact on endangered species.

RECREATION

Existing Conditions

Recreational opportunities abound in the vicinity. The levee is used by joggers, walkers, bird watchers, and fishermen. Very little bank fishing occurs along the canal south of Robert E. Lee Boulevard. Some limited fishing, crabbing, and pleasure boating takes place in the 1.2 miles of the canal between Robert E. Lee Boulevard and the lake. The adjacent park provide areas for field sport activities, picnicking, and similar activities. The New Orleans Recreational Department operates the Gernon Brown Memorial Recreational Center adjacent to the levee at Harrison Avenue. This building is used for indoor games, recreation, and community activities.

Future Without Project

Recreational resources will remain as they are at present.

Butterfly Valve Alternative Impacts

Construction of the cofferdam and the structure would interrupt the minimal fishing and crabbing activities that occur in the bayou mouth. Noise during construction could temporarily disrupt the minimal bird-watching activities that occur at the present. With the structure in place, boat access to 0.4 miles of canal south of the structure will be blocked. This is not considered detrimental due to the minimal use of the canal for boating. The completed structure would have essentially no overall impact on recreation.

Parallel Protection Alternative Impacts

All use of the five miles of earthen levee would be disrupted during construction. Once the protection is completed, there would be only 0.75 miles of earthen levee remaining (north of Robert E. Lee Boulevard and west of the canal). When revegetated, this levee would support recreational activities similar to those occurring now, although on a levee that is 3-4 feet higher than the present levee. The remainder would be floodwall. This floodwall would restrict pedestrian access to the water along most of the canal. Because of their height, these floodwalls will

provide a visual as well as a physical barrier to recreationalists wishing to approach the waters edge.

ESTHETICS

Existing Conditions

As described above, two-thirds of the canal corridor is bounded by green spaces with an esthetically pleasing mixture of grass, oaks, and pines. The trees add to the scenic beauty and provide shade for various recreational activities. The levee on the east side provides a green backdrop screening the view of the neighborhood beyond.

City Park, a large municipal park, is immediately adjacent to the east protection levee. This park provides a large tract of minimally developed land dominated with large mature trees (oak, pine, etc.) intermixed with large green spaces, ponds, and waterways.

Future Without Project

Esthetics would remain as they are at present.

Butterfly Valve Alternative Impacts

Initial construction would result in increasing levels of noise and dust in the area of work. After the structure is completed, the tie-in levee will be revegetated and soon return to its preproject esthetic condition. The upper portion of the structure will be evident from the both sides of the canal. This structure is relatively small in size and impacts are not considered significant.

Parallel Protection Alternative Impacts

Increasing the height of 0.75 miles of earthen levee, replacement of 2.6 miles earthen levee with floodwall, and replacement of 1.85 miles of

floodwall would cause significant impacts to the esthetic environment. Approximately 162 trees would be removed and some smaller trees would be relocated. Trees would be replaced as described earlier. In places where floodwalls replace an earthen levee, a visual barrier would be evident in an area that traditionally has been a green space. This wall could be esthetically unattractive if measures are not implemented to soften the adverse visual impacts. Surface treatment such as exposed aggregate, three dimensional features, and earth tone paint would minimize and partially mitigate adverse visual impacts.

CULTURAL

Existing Conditions

The project area includes an existing levee corridor on post-1930 reclaimed land and the artificial channel of the Orleans Avenue Outfall Canal. No cultural resources are recorded in the vicinity of the proposed work.

Future Without Project

Same as existing conditions.

Butterfly Valve Alternative Impacts

No impacts to significant cultural resources are anticipated and no cultural surveys are warranted.

Parallel Protective Alternative Impacts

No impacts on significant cultural resources are anticipated and no cultural resource surveys are warranted.

NOISE

Existing Conditions

The background noise levels for the project area are approximated to range from 70 dBA in the project reaches located in residential areas on the west side, south of Robert E. Lee Boulevard to 50 dBA in the quieter park-like residential areas north of Robert E. Lee and in City Park itself. Edward Hayne Elementary School lies just west of the floodwall at Harrision Avenue.

Future Without Project

There would be no noise associated with construction.

Butterfly Valve Alternative Impacts

Installation of this structure would require several construction stages including pile driving, backfilling, slab construction, and finishing work. The greatest source of noise will be the pile driving activity which is to be performed in a noncontinuous fashion for approximately 108, 10-hour days.

The greatest exposure would be encountered in the park adjacent to the construction. Exposure levels here would range from 95-105 DBA. This level of noise intrusion would interfere with passive recreation such as pleasure walking, picnicking, bird watching, etc. In addition, some interference with oral communication could be expected near the construction site.

Residences within the project area would be exposed to noise levels ranging from 77-95 dBA for 108 days depending on the distance from the source. Approximately four houses would be exposed to 89-95 dBA, 11 to 83-89, dBA and 48 to 77-83 dBA. These are exterior noise levels; interior noise exposure should be less. Vibrations resulting from the pile

driving operation encountered by approximately 20 residences 200-400 feet from the source should be minimal. While these vibrations may be annoying to these residences, the potential for vibration-induced structural damage should be minimal.

The remaining activities, including slab construction (72 days), backfill operation (10 days), and finishing work (10 days), would produce heightened noise levels ranging from 63-95 dBA. Four homes would be exposed to 76-95 dBA, 11 to 70-89 dBA, and 48 to 63-83 dBA. These are exterior noise levels; the interior exposure to noise would be less.

Parallel Protection

This method of construction results in increases in noise levels produced from degrading and upgrading existing levees and floodwalls. The noise levels expected would range from 95-105 dBA when measured 50 feet from the center of the noise source. Portions of the Hayne Elementary school would be exposed to this level of noise; however, no homes would be within this range. Some disruption of classes is expected, especially during the 7 days when levels are 95-105 dBA (See Table 1). Approximately 168 residences would be exposed to noise levels ranging from 77-95 dBA. Approximately 168 residences would be exposed to 77-83 dBA. Ambient noise level for the area is 50-70 dBA. Table 1 outlines the number of days a particular residence would be exposed to a noise level.

Construction workers would have protective hearing devices. Since construction would take place during daylight hours, sleep interference should occur only for napping children and day sleepers. Noise mainly affects bodily functions (hearing rate, respiratory volume, digestive secretions, hormonal secretions, etc.). If prolonged, the construction noise levels could produce significant physiological damage. However, the relatively short duration of the noise should prevent such problems from occurring. The noise could be annoying to inhabitants of the 20 residences within the 400 feet of the actual work site. During the time the noise was

higher than 85 dBA, it could be difficult to hold a conversation within the impacted house and recreational areas.

Table l
Noise Exposure for Floodwalls (days)

Distance (feet)

Buildings (number)

Decibels

	٠				95-105	89-95	83-89	77-83
0-50	1	green space,	public	school	7	7	14	27
50-100	81	residences	•		-	10	16	28
100-200	87	residenc es				-	21	32
200-400	93	residences			_	-	-	42

Therefore, during construction the noise levels would increase a maximum of 35-45 dBA above ambient. This level of increase is not expected to interfere with residential activity since most of the work will be done during daylight hours and exposure levels inside the homes would be further reduced.

COMMUNITY COHESION

Existing Conditions

The residents of Orleans Parish are in favor of protection provided by the hurricane protection project and have voted for a bond issue which assists in funding the work.

Future Without the Project

The area adjacent to the canal would be subject to flooding from the canal during hurricanes.

Butterfly Valve Alternative Impacts

This alternative would provide the necessary flood protection. Disruption in localized traffic patterns, recreational activities, and esthetics would be sporadic and fairly short term. The initial movement of equipment onto and off of the site would account for the major portion of the traffic increase. Some occasional heavy traffic would be encountered when fill material is truck-transported onto the site and dredged material is being transported off site. Since fill requirements are minimal, traffic patterns should be normal during the majority of the work.

Parallel Protection Alternative Impacts

This alternative would provide the necessary flood protection. Disruption in traffic patterns would be much greater with this alternative due to the fill requirements and the widespread use of pile driving equipment. Recreational activities would be disrupted for long periods of time as would the esthetics in the area. Increased levels of noise would be expected during the entire two-year construction period somewhere along canal from the lakefront to Interstate 10. This method of construction is not localized to a specific area like the construction of the butterfly valve.

MITIGATION

Because of the low habitat quality of the construction site and the minimal habitat effected, no wildlife mitigation is proposed. In order to minimize potential impacts, turbidity screens would be used during dredging and construction activities which are likely to resuspend sediment. Dredged material from the canal bottom should be transported in trucks equipped with leak-proof liners and transported to state approved upland disposal sites. To minimize noise associated problems, pile driving will be limited to daylight hours.

COMPLIANCE WITH ENVIRONMENTAL LAWS

Compliance with the Endangered Species Act has been achieved. Cultural compliance has been achieved. If parallel protection is chosen, no Section 404(b)(1) Evaluation or Coastal Zone Management Consistency Determination would be necessary. If the butterfly valve alternative is chosen, both of these documents would need to be prepared.

COORDINATION

Copies of this EA will be distributed to the parties shown in Table 2.

Literaure Cited

Schurtz, M. H. and K. M. St. Pe'. 1984. Report on Interim Findings:
water quality Investigation of environmental conditions in Lake
Pontchartrain. Louisiana Department of Environmental Quality. Water
Pollution Control Division, Baton Rouge.

CONCLUSION

The U.S. Army Corps of Engineers, New Orleans District, proposes to provide flood protection to areas adjacent to the Orleans Avenue Outfall Canal by construction of a butterfly-valved structure north of Robert E. Lee Boulevard. Impacts to fish and wildlife resources, recreation, endangered species, cultural resources, esthetics, noise, and community cohesion would be minimal with this plan. The Orleans Levee Board prefers the more costly alternative of providing parallel protection by raising levees and floodwall along the entire 2.6-mile canal. Most impacts will be similar to the butterfly valve, but noise would be greater and community cohesion would be more adversely impacted with parallel protection.

fam / and

18 July 1988

John C. Wiler 18 18 88 Reviewed by:

TABLE 2

LAKE PONTCHARTRAIN, LA, AND VICINITY EA MAILING LIST

CONGRESSIONAL

Honorable J. Bennett Johnston Honorable John B. Breaux Honorable Lindy Boggs Honorable Billy Tauzin Honorable Robert L. Livingston

FEDERAL

U.S. Department of Commerce Washington, D.C.

National Marine Fisheries Service St. Petersburg, FL Baton Rouge, LA

U.S. Environmental Protection Agency Dallas, TX

Gulf of Mexico Fisheries Mgmt. Coun. Tampa, FL

U.S. Dept. of Housing and Urban Devel. Ft. Worth, TX

U.S. Dept. of the Interior Washington, D.C.

U.S. Fish and Wildlife Service Lafayette, LA

Federal Highway Administration Baton Rouge, LA

U.S. Coast Guard New Orleans

Advisory Council on Historic Preserv. Golden, CO Washington, D.C.

STATE

State Historic Preservation Officer

Department of Environmental Quality Water Pollution Control Division

STATE (Cont'd)

Department of Natural Resources Office of Environmental Affairs Coastal Resources Program

Department of Transportation Office of Public Program

Department of Wildlife and Fisheries Secretary Ecological Studies Section Natural Heritage Program

LOCAL

Orleans Levee Board

East Jefferson Levee Board

Pontchartrain Levee Board

Lake Borgne Levee Board

City of New Orleans City Planning Commission City Council Mayor

Regional Planning Commission

St. Charles Parish Council

St. Bernard Parish Police Jury

Plaquemines Parish Commission Council

St. Tammany Parish Police Jury

City of Mandeville

ENVIRONMENTAL

Orleans Audubon Society

Environmental Defense Fund

ENVIRONMENTAL (Cont'd)

League of Women Voters of Louisiana
Louisiana Wildlife Federation
Delta Chapter, Sierra Club
Bonnet Carre' Rod and Gun Club
Tulane Law School
St. Charles Environmental Council

OTHERS

Hayne Elementary School

DEPARTMENT OF THE ARMY

NEW ORLEANS DISTRICT, CORPS OF ENGINEERS P.O. BOX 60267 NEW ORLEANS, LOUISIANA 70160-0267

REPLY TO ATTENTION OF:

Planning Division Environmental Analysis Branch

FINDING OF NO SIGNIFICANT IMPACT

Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection Project

ORLEANS AVENUE OUTFALL CANAL - FLOOD PROTECTION

Description of Action. The U.S. Army Corps of Engineers, New Orleans District, has studied alternative methods of providing high level flood protection for the Orleans Avenue Outfall Canal. The Corps recommends the placement of a structure (butterfly valve) in the canal itself. However, the Orleans Levee Board proposes raising existing levees along the canal, thus providing parallel protection.

Factors Considered in Determination. The following factors were considered in determining that the proposed action would cause no significant impact: fisheries, wildlife, cultural resources, endangered species, noise, community cohesion, esthetics and recreation.

Public Involvement. The EA was circulated to interested parties in July 1988.

Conclusion. The office has assessed the environmental impact of both of the proposed actions and has determined that neither would have significant impact upon the human environment. Therefore, no Environmental Impact Statement will be prepared. The Corps recommends the butterfly valve alternative because it is the more cost effective and less disruptive approach to providing flood protection that will meet specifications of the High Level Hurricane Protection Plan.

Colonel, Corps of Engineers

District Engineer

U.S. FISH AND WILDLIFE COORDINATION ACT LETTER

United States Department of the Interior FISH AND WILDLIFE SERVICE

POST OFFICE BOX 4305 103 EAST CYPRESS STREET LAFAYETTE, LOUISIANA 70502

SEP 30 1987

September 25, 1987

Colonel Lloyd K. Brown District Engineer U.S. Army Corps of Engineers Post Office Box 60267 New Orleans, Louisiana 70160

Dear Colonel Brown:

Reference is made to the General Design Memorandum for the Orleans Avenue Outfall Canal feature of the Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection Project. The intent of this report is to provide your agency with essential data, assumptions, and information to be used in developing the above-referenced General Design Memorandum. This report is provided as a supplement to the Fish and Wildlife Coordination Act Report which was submitted in July 1984 and attached to the Corps of Engineers (Corps) Main Report and Supplement I to the Environmental Impact Statement for this project. This supplemental report constitutes the report of the Secretary of the Interior as required by Section 2(b) of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.) and was prepared in consultation with the Louisiana Department of Wildlife and Fisheries and the National Marine Fisheries Service.

The recommended plan presented in the Corps! July 1984 Main Report and Environmental Impact Statement proposes to rectify deficiencies in the main outfall canals entering Lake Pontchartrain to provide hurricane protection for the Metropolitan New Orleans area. The proposed project includes modification of a major outfall canal on Orleans Avenue which provides interior drainage for a portion of the urban Orleans Parish area.

Presently, two alternatives are under consideration. The first alternative consists of placement of a water control structure recessed within the Orleans Avenue Outfall Canal inland from the outfall at the south shore of Lake Pontchartrain. The water control structure would require partial closure of the canal and installation of a vertical-pivoting butterfly valve gate. The gate would passively allow discharge of the canal waters into Lake Pontchartrain whenever the water level in the canal exceeds that of the lake. Conversely, when lake water levels exceed that of the canal, the gate would automatically close. An undetermined amount of dredging of the canal during construction of the water control structure and closure, levees, and approach channels would occur in conjunction with this proposed alternative.

The second alternative, as identified in the Corps' Main Report and Supplement I to the Environmental Impact Statement for the Hurricane protection Project, consists of raising the height of the return levees paralleling the Orleans Avenue Outfall Canal and providing floodgates or road ramps at all existing bridges crossing the canal. The levees would either be widened landward from the canal, or floodwalls would be installed atop the existing levee to achieve the required height for hurricane protection. The amount of dredging associated with the second alternative is also undetermined at this time.

The existing levee to be affected by the proposed improvements is frequently mowed. Predominant vegetation on the levee includes perennial grasses and herbs. Due to human disturbance and vegetative structure, the levee is thought to provide habitat of negligible value to wildlife. In addition, the waters of the Orleans Avenue Canal (which receives stormwater runoff pumped from the Metropolitan New Orleans area) are of generally poor water quality and of negligible value as habitat for fishery resources. Accordingly, the habitat of the levees and adjacent canal to be directly affected by the two alternatives under consideration have been designated as Resource Category 4 habitats, as defined in the Fish and Wildlife Service's Mitigation Policy (Federal Register, Volume 46, No. 15, January 23, 1981).

The indirect impacts of the proposed project may include adverse effects to the nearshore areas of Lake Pontchartrain. The estuarine subtidal open water habitat found in the vicinity of proposed project feature is considered to have medium fish and wildlife resource value and has been designated as Resource Category 3 habitat. The nearshore areas adjacent to the proposed project area provide moderate value nursery and feeding habitat for estuarine-dependent commercial and sport finfishes and shellfishes. Economically important sport and commercial species common to Lake Pontchartrain include brown shrimp, white shrimp, blue crab, Atlantic croaker, gulf menhaden, spot, striped mullet, red drum, southern flounder, spotted seatrout, sand seatrout, black drum, and sheepshead. Wildlife use of the proposed project area includes limited feeding and resting by various seabirds and migratory waterfowl, principally lesser scaup. Lesser scaup feed extensively on benthic fauna of the project area during the winter months.

Although such estuarine areas are relatively abundant on a national basis and within the Louisiana coastal zone, the fish and wildlife habitat quality of such areas has been and continues to be degraded by a variety of human activities and natural phenomena. This degradation is particularly acute in the southern portion of Lake Pontchartrain, which receives chronic inputs of a broad spectrum of contaminants from urban, domestic, and commercial sources. The most significantly impacted habitats are nearshore areas receiving discharges from the major drainage canals (including the Orleans Avenue Outfall Canal) which are the primary receiving basins for stormwater runoff and incidental sewerage effluent from the metropolitan area adjacent to the lake (Schurtz and St. Pé 1984). This stormwater runoff, which is pumped into the Orleans Avenue Outfall Canal and ultimately discharged into Lake Pontchartrain, has been generally characterized as heavily polluted. Typical contaminants present in the canal discharge include oils and other petroleum hydrocarbons, pesticides, fertilizers, heavy metals, salts, combustion hydrocarbons and acids, detergents, organic plasticizers, oxygen demanding wastes, sediment, and raw domestic sewage (Schurtz and St. Pé 1984).

Due to the discharge of the above contaminants, the Louisiana Department of Environmental Quality (1985) has classified the receiving waters of Lake Pontchartrain in the vicinity of the Orleans Parish outfall canals as Water Quality Limited. Such classification indicates that the nearshore waters affected by the canal effluent do not meet water quality standards applicable to the effluent limitations required by the Clean Water Act. In addition, the waters of the outfall canals and the adjacent nearshore areas, although designated by the Louisiana Department of Environmental Quality (1984) for primary and secondary contact recreation and for propagation of fish and wildlife, usually do not satisfy the primary contact designation because of excessive fecal coliform bacteria levels.

There are two basic types of contaminants in the stormwater effluent entering the Orleans Avenue Outfall Canal which affect aquatic life in the canal and nearshore vicinity of the proposed project area. The presence of refractory compounds (i.e., those of relatively low biodegradability), such as organic chemicals and heavy metals, tend to accumulate in the sediments and may demonstrate varying degrees of toxicity, bioaccumulation, and/or sublethal effects to aquatic organisms. Other compounds biodegrade, causing periodic and severe oxygen depletions in the canal and nearshore areas (especially during the warmer months), and also result in eutrophication in the lake overall (Schurtz and St. Pé 1984).

Englande et al. (1979) stated that the mouths of the canals west of the Inner Harbor Navigation Canal (including the Orleans Avenue Outfall Canal) chronically exceed aquatic life standards for fecal coliform, ammonia, and a variety of heavy metals. Furthermore, they indicate that Environmental Protection Agency criteria for propagation of fish and wildlife were consistently exceeded for dissolved oxygen, copper, iron, barium, zinc, cadmium, and phenol. In addition, they identified nickel, mercury, cynanide, arsenic, lead, pH, suspended solids, and oil and grease concentrations as frequently exceeding recommended levels.

The urban runoff entering the outfall canals undergoes quality changes prior to discharge from the drainage canal system. Dissolved oxygen levels decrease and coliform concentrations increase dramatically during canal storage (Englande et al. 1979). Although the effect of contaminated runoff is a year-round problem in the project area, it is most critical during intense rainfall events. Particularly detrimental are oxygen depletions caused by the "first-flush" of stormwater, which is similar in content to domestic sewage due to comingling of effluent from stormwater and leaking sanitary sewers (Englande et al. 1979).

Due to their lack of motility, populations of benthic organisms are severely affected by oxygen depletions and chronic exposure to pollutants in the vicinity of the outfall canals and nearshore areas, resulting in reduction of total numbers and species diversity. Such severe dissolved oxygen depletions cause sudden mass mortalities of aerobic benthic organisms, and if such conditions persist, result in mortality of even highly tolerant, facultatively anaerobic organisms

as well (Schurtz and St. Pé 1984). The effects of oxygen depletions and chronic exposure to contaminants in the vicinity of the outfall canals upon demersal and pelagic fishes and crustaceans is more difficult to assess, due to their ability to avoid the affected area.

The principal impacts on fish and wildlife resources associated with dredging and construction activities necessary for installation of the butterfly-valve water control structure would be a temporary increase in turbidity with a corresponding resuspension of contaminated sediment into the water column. Corresponding minor reductions in benthic and plankton populations in the canal can be anticipated along with an unquantified reduction in local populations of those fishes and shellfishes which are dependent upon these food sources. In addition, resuspension of polluted sediments may result in oxygen depletion and the release of toxic materials in the canal and adjacent nearshore areas of Lake Pontchartrain, potentially resulting in a fish kill. Similar impacts would be associated with dredging of borrow material from the Orleans Avenue Canal if such action was needed to upgrade existing pump stations and to enlarge the parallel levees along that canal.

In order to minimize the potential impacts to fish and wildlife resources associated with either proposed alternative, the Service recommends that the following modifications be incorporated in the General Design Memorandum for the Orleans Avenue Outfall feature:

- A turbidity screen should be used in the outfall canal during all dredging and construction activities which are likely to resuspend sediment, in order to minimize discharges of contaminated suspended sediment into Lake Pontchartrain.
- 2. All dredged material should be removed by bucket dredge and transported to a state-approved, upland site for disposal.

Please advise us of any significant changes in the proposed project alternatives as the General Design Memorandum proceeds through the Corps' review and approval process so that we may provide you with appropriate findings and recommendations relative to those changes.

Sincerely yours,

David W. Frugé (Field Supervisor

cc: EPA, Dallas, TX

LA Dept. of Wildlife and Fisheries, Baton Rouge, LA LA Dept. of Natural Resources (CMD), Baton Rouge, LA LA Dept. of Environmental Quality (Attn: Mike Schurtz)

NMFS, Baton Rouge, LA FWS, Atlanta, GA (AWE)

FWS, Jackson, MS

FWS, Washington, DC (ES/FP)

LITERATURE CITED

- Englande, A.J., Jr., Suter, K.P., and N.K. Williams, 1979. Water quality in Orleans Parish: problems, trends, and recommendations. Pages 37-63 In: J.W. Day, Jr., D.D. Culley, Jr., R.E. Turner and A.J. Mumphrey, Jr., eds. Proceedings Third Coastal Marsh and Estuary Management Symposium. Louisiana State University Division of Continuing Education, Baton Rouge, Louisiana.
- Louisiana Department of Environmental Quality. 1985. Louisiana Water Pollution Control Regulations. Department of Environmental Quality Office of Water Resources, Baton Rouge.
- Louisiana Department of Environmental Quality. 1984. Louisiana Water Quality Standards. Department of Environmental Quality Office of Water Resources, Baton Rouge.
- Schurtz, M.H. and K.M. St. Pé. 1984. Report on interim findings: water quality investigation of environmental conditions in Lake Pontchartrain. Louisiana Department of Environmental Quality Water Pollution Control Division, Baton Rouge.

ADDITIONAL REFERENCES

- Fritschi, E.W. 1963. A study of the drainage relief outfall canals in the City of New Orleans. Ms. Thesis, Tulane University, New Orleans.
- Mason, J.W. and D. R. Rowe. 1966. The ponding of storm water runoff and its effect on pollution reduction of Lake Pontchartrain. Burk and Associates, Inc., New Orleans, Louisiana. 66 p. 486-5901.
- Mura, R.A. 1971. Lake Pontchartrain, Louisiana: South Shore at New Orleans, environmental data analysis. M.S. Thesis, Tulane University, New Orleans.
- New Orleans Office of Analysis and Planning. 1981. Comprehensive environmental strategy for New Orleans. Office of Analysis and Planning, New Orleans.
- New Orleans Sewerage and Water Board. 1970. Storm water pollution, New Orleans, Louisiana, Final Report. New Orleans Sewerage and Water Board, New Orleans.
- New Orleans Sewerage and Water Board. 1970. Storm water pollution, New Orleans, Louisiana, Supplementary Report. New Orleans Sewerage and Water Board, New Orleans.
- Parker, V.C. 1984. Natural and urban impacts on the estuarine complex: urban runoff and sewerage. Pages 10-13 in F. Wagner and F. J. Monteferrante (editors). Selected proceedings of the conference entitled the Lake Pontchartrain/Lake Maurepas estuarine complex: perspectives on its future. Louisiana Department of Natural Resources, Coastal Management Division, Baton Rouge.
- Rayle, M. F. 1978. Zonation of Lake Pontchartrain invertebrates in a polluted New Orleans outfall canal. M.S. Thesis, University of New Orleans, New Orleans.

LETTER CITY OF NEW ORLEANS DEPT. OF STREETS

CITY OF NEW ORLEAD

DEPARTMENT OF STREETS ROOM 6W02 CITY HALL **NEW ORLEANS, LOUISIANA 70112**

BETTY JO EVERETT

August 26, 1986

John Holtgreve Design Engineering, Inc. 3330 West Esplanade Avenue South Metairie, Louisiana 70002

Dear Mr. Holtgreve:

The City, Department of Streets wants to provisions be maintained for all bridges to remain open at all times. The fire at Harrison Avenue on Saturday was critical but could have been much worse if access were denied because flood gates prevented access for a five-alarm fire.

Bett∜ Jo Everett DÍRECTOR

BJE:dbr

98. Hd 6E 1

Ms. Betty Jo Everett, Director Department of Streets Room 6W02, City Hall 1300 Perdido Street New Orleans, Louisiana 70112

Re: Orleans Avenue Canal Flood Protection

Improvement Project

OLB Project No. 2048-0278

DEI Project No. 1006

Dear Ms. Everett:

We fully agree with and appreciate your recommendation concerning the necessity to provide access at all times at all of the bridges crossing the Orleans Canal. Nearly one year ago our firm made exactly the same recommendation to the Board of the Orleans Levee District. The Orleans Levee Board has accepted our recommendation and has authorized design of flood protection methods that will insure that the bridges are not closed during high water events.

We are very pleased that a major city agency such as yours has, by written action, recognized the necessity to maintain the bridges in an open position at all times. Your stated position is very supportive of our original recommendation and will quite frankly provide the U.S. Army Corps of Engineers with needed insight during their review process.

We look forward to a successful completion of this project in the not too distant future, and will continue to advise your office as progress continues on the project.

Ms. Betty Jo Everett Page 2

Thank you for your interest and should you have need of additional information, please call us.

With best regards, I remain

Sincerely,

DESIGN ENGINEERING, INC.

John Holtgreve

JH/mnh

cc: Honorable Emile W. Schneider, President

Mr. H. Baylor Lansden, Managing Director

Mr. C. E. Bailey, Chief Engineer

Mr. Ron Elmer, U. S. Army Corps of Engineers

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO.19, GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

APPENDIX A

- A-1 ENVIRONMENTAL ASSESSMENT FONSI
- A-2 U.S. FISH AND WILDLIFE COORDINATION ACT LETTER
- A-3 LETTER CITY OF NEW ORLEANS DEPT. OF STREETS

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY HIGH LEVEL PLAN DESIGN MEMORANDUM NO.19, GENERAL DESIGN ORLEANS AVENUE OUTFALL CANAL

APPENDIX B

B_1	SOTT	ጥደደጥ	$\Delta T \Delta G$	SHEETS

AE/COE PIEZOMETER READINGS SAMPLE CALCULATIONS

B-3

SOIL TEST DATA SHEETS

1 MAY 63 2090

PREVIOUS EDITIONS ARE OBSOLETE.

(TRANSLUCENT)

3424

							
٠	3	THE THEORY	12=			 	
1.0	5		(B)				
P	د و		117		 		
F	F		11/			 	†‡ ‡‡‡‡
	6		W				<u> </u>
m .8	2		<u> </u>	<u> </u>			▎▋ ▍▍▍
	F			· ╂┼┼┼╂┼┼	╀╀┼┼┼┼	 	╅╂┼┼┼┦
5"	_						
						++++	
	. 1		 		 		
4 11 11 11 11 11 11 11 11 11 11 11 11 11			###			 	
lő Hillian I			##		 	 	;;;;; ;;
ttor 8	Ď						
¥	8		W				
Deviator Stress			411		<u> </u>	<u> </u>	
8 0	0	3	111	2	3	 	''''''
	O	±				·+	
		Nor	ma.i	Stress,	7, T/8Q 1	5at.8=	103.4
			-			241.02	
	Test	No.		1	2	3	Avg.
	╽ _┛ ┝	Water content	¥ _O	57 . 2%	.55.9 \$	58 .1 %	57.18
	# -	Void ratio	еo	1.50	1.46	1.5°	
	۱ãL	Saturation	So	100+ %	100+ %	99.9 %	%
		Dry density, lb/cu ft	$\gamma_{\rm d}$	65.8	66.8	64.9	
	4	Water content	w _c	%	%	46	%
	Shear	Void ratio	e _c				
		Saturation	s _c	*	%	16	1/2
0 5 10 15 20	비造는	Final back pres-					
Axial Strain, %	\vdash	sure, T/sq ft	u _o	-			4
Axial Strain, %	7	Water content	Wf	9.	%	%	%
Shear Strength Parameters	Finel	Water content Void ratio	w _f	.,			1,
Shear Strength Parameters	Mino stre	Water content Void ratio r principal ss, T/sq ft	w _f e _f	0.5	1.5	3.0	%
Shear Strength Parameters • = 0 • tan • = 0	Mino stre Max stre	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (σ ₁ -σ ₃	w _f e _f σ ₃	0.5			7,
Shear Strength Parameters	Mino stre Max stre	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (σ1-σ3) to failure, min	w _f e _f	0.5	1.5	3.0	9,
Shear Strength Parameters	Mino stre Max stre Time	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (σ ₁ -σ ₃	w _f e _f σ ₃	0.5	1.5 0.91	3.0	76
Shear Strength Parameters • = 0 • tan • = 0	Mino stre Max stre Time	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft to failure, min of strain.	w _f e _f σ ₃	0.5 0.94 14	1.5 0.91 13	3.0 0.98 45	76
Shear Strength Parameters • = 0 ° tan • = 0 c = 0.47 T/sq ft	Mino stre Max stre Time	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft to failure, min of strain, ent/min	wf ef s	0.5 0.94 14 0.22	1.5 0.91 13	3.0 0.98 45	76
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (σ ₁ -σ ₃ to failure, min of strain, ent/min deviator ss, T/sq ft (σ ₁ -σ ₃	wf ef s3)max	0.5 0.94 14 0.22	1.5 0.91 13	3.0 0.98 45	76
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation	Mino stre Max stre Time Rate perc	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3) to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3) ial diameter, in.	w _f e _f σ ₃) _{max} t _f	0.5 0.94 14 0.22	1.5 0.91 13	3.0 0.98 45	7,
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation Controlled stress X Controlled strain	Mino stre Max stre Time Rate perce	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3 to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3 ial diameter, in. ial height, in.	wf ef o3)max tf	0.5 0.94 14 0.22	1.5 0.91 13 0.14	3.0 0.98 45 0.08	76
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation Controlled stress X Controlled strain	Mino stre Max stre Time Rate perce	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3) to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3) ial diameter, in.	wf ef o3)max tf	0.5 0.94 14 0.22	1.5 0.91 13 0.14	3.0 0.98 45 0.08	76
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of sp	Mino stre Max stre Rate perce Ult stre Init Init	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3 to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3 ial diameter, in. ial height, in.	w _f e _f σ ₃) _{max} t _f D _o H _o	0.5 0.94 14 0.22	1.5 0.91 13 0.14 1.41 3.00	3.0 0.98 45 0.08	
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of sp	Mino stre Max stre Rate perce Ult stre Init Init	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3 to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3 ial diameter, in. ial height, in. UNDISTURE	w _f e _f σ ₃) _{max} t _f D _o H _o	0.5 0.94 14 0.22	1.5 0.91 13 0.14 1.41 3.00	3.0 0.98 45 0.08 1.41 3.00	
Shear Strength Parameters = 0 0 tan = 0 c = 0.47 T/sq ft Method of saturation	Mino stre Max stre Rate perce Ult stre Init Init	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft (\sigma_1-\sigma_3 to failure, min of strain, ent/min deviator ss, T/sq ft (\sigma_1-\sigma_3 ial diameter, in. ial height, in. UNDISTURBI	wf ef s3)max tf	0.5 0.94 14 0.22 1.41 3.00	1.5 0.91 13 0.14 1.41 3.00	3.0 0.98 45 0.08 1.41 3.00 wood f	ragments
Shear Strength Parameters	Mino stre Max stre Rate perce Ult stre Init Init	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft to failure, min of strain, ent/min deviator ss, T/sq ft (G1-G3) ial diameter, in. ial height, in. UNDISTURE I), gray and brow PI 92	wf ef o3) max tf	0.5 0.94 14 0.22 1.41 3.00 contain	1.5 0.91 13 0.14 1.41 3.00 s a few	3.0 0.98 45 0.08 1.41 3.00 wood f G ₈ 2	ragments .63
Shear Strength Parameters	Mino stree Max stree Time Rate perce Init Init	Water content Void ratio r principal ss, T/sq ft deviator ss, T/sq ft to failure, min of strain, ent/min deviator ss, T/sq ft (G1-G3 ial diameter, in. ial height, in. UNDISTURB I), gray and brow PI 92 Project LK. Po	wf ef o3)max tf	0.5 0.94 14 0.22 1.41 3.00 contain	1.5 0.91 13 0.14 1.41 3.00 s a few	3.0 0.98 45 0.08 1.41 3.00 wood f G ₈ 2 . PROT.	ragments.63
Shear Strength Parameters	Mino stree Max stree Time Rate perce Init Init	Water content Void ratio r principal ss, T/sq ft deviator ft (51-53) to failure, min of strain, ent/min deviator ft (51-53) ial diameter, in. ial height, in. UNDISTURB I), gray and brow PI 92 Project LK. PO ORLEANS PAR Area CDM NO. Boring No. 2-00	wf ef o3)max tf Do Ho ONT.	0.5 0.94 14 0.22 1.41 3.00 contain LA.&VI LAKE FR	1.5 0.91 13 0.14 1.41 3.00 s a few CHURR ONT LEV	3.0 0.98 45 0.08 1.41 3.00 wood f G ₈ 2 . PROT.	ragments .63 (70) OF IHNO
Shear Strength Parameters	Mino stree Max stree Time Rate perce Init Init	Void ratio r principal ss, T/sq ft deviator ss, T/sq ft to failure, min of strain, ent/min deviator ss, T/sq ft (G1-G3 to failure, min of strain, ent/min deviator ss, T/sq ft (G1-G3 ial diameter, in. ial height, in. UNDISTURB I), gray and brow PI 92 Project LK. PO ORLEANS PAR Area CDM NO. Boring No. 2-OU Texth	wf ef o3)max tf Do Ho ONT.	0.5 0.94 14 0.22 1.41 3.00 contain LA.&VI LAKE FR	1.5 0.91 13 0.14 1.41 3.00 s a few CHURR ONT LEV .5(OUTF	3.0 0.98 45 0.08 1.41 3.00 wood f G _B 2 . PROT. EE WEST ALL CANA	ragments .63 (70) OF IHNO
Shear Strength Parameters	Mino stree Max stree Time Rate perce Init Init	Void ratio r principal ss, T/sq ft deviator ft (51-53 to failure, min of strain, ent/min deviator ft (51-53 ial diameter, in. ial height, in. UNDISTURBI I), gray and brow PI 92 Project LK. PO ORLEANS PAR Area GDM NO. Boring No. 2-00 Depth El -4.9	wf ef o3)max tf Do Ho ED ONT.	0.5 0.94 14 0.22 1.41 3.00 contain LA.&VI LAKE FR	1.5 0.91 1.3 0.14 1.41 3.00 s a few CHURR ONT LEV .5(OUTF. Sample No.	3.0 0.98 45 0.08 1.41 3.00 wood f G _B 2 . PROT. EE WEST ALL CANA	ragments .63 (70) OF IHNO

F Stress, 0 ₁ - 0 ₃ , 1				2 Stress,	3 5, T/sq	sat.8=	5
	Tes	t No.		1	2	3	Avg.
	4	Water content Void ratio	W _O	38.2 %	40.3 %	41.7%	40.1 %
	nitial	Saturation	e _o	1.07 95.3 %	1.13 95.2 %	1.14 97.7 %	4
	#	Dry density, lb/cu ft	7 _d	80.6	78.3	77.8	
	1	Water content	W _C	%	%	%	%
	Shear	Void ratio	e _c				
	Before	Saturation	s _c	1,	%	%	%
0 5 10 15 20	Bef	Final back pres- sure, T/sq ft	uo				
Axial Strain, %	Finel	Water content	v f	1,5	%	%	%
Shear Strength Parameters		Void ratio	ef	·			:
• = 0 0	stre	ess, T/sq ft	σ3	0.5	1.5	3.0	
tan • = 0		deviator ess, T/sq ft (01-03		1	0.88	1.00	
c = 0.45 T/sq ft		e to failure, min	tf	 	33	20	
Method of saturation		ent/min		0.12	0.15	0.20	
	Ult	deviator ess, T/sq ft (01-03)				
Controlled stress		ial diameter, in.	Do	1.40	1.41	1.41	
X Controlled strain		ial height, in.	Ho	3.00	3.00	3.00	
Type of test Q Type of sp	ecime	n UNDIST				J	' , , , , , , , , , , , , , , , , , , ,
Classification SANDY CLAY	(CL)	gray, contains			sand		
LL 41 PL 19		PI 22				G₈ 2.	67
Remarks		Project _{LK. POI}	T.	LA&VI	CHURR	. PROT.	(70)
		- II .					
		ORLEANS PARIS	<u> </u>	<u> </u>	The second second second		
		Area GDM NO.2					NALS)
		Area GDM NO.2 Boring No. 2-00	2,			FALL CA	
		Boring No. 2-00 Boring No. 2-00 Bepth El -54.	JE ‡		.5 (OUT Sample No Date 7	FALL CALL CALL Dec. 1	C

1. 1. 23, T/sq ft.		2					
		0 1 Nor	mel	2 Stress,	3 7, T/sq 1	14 14 15 at x =	MHHH 107. /
	Tes	t No.		1	2	3	Avg.
		Water content	w _o		52 . 1 %	-	
	3	Void ratio	eo	1.40	1.42	1.36	· · · · · · · · · · · · · · · · · · ·
	Initia	Saturation	So	99.1 %			%
	"	Dry density, lb/cu ft	$r_{\rm d}$	70.4	70.0	71.8	
	5	Water content	w _C	%	%	%	%
	Shear	Void ratio	ec				
	ore	Saturation	s _c	*	%	1/5	%
0 5 10 15 20	Before	Final back pres- sure, T/sq ft	uo				
Axial Strain, %	7	Water content	wf	1,6	%	16	%
Shear Strength Parameters	Final	Void ratio	ef				
• = <u>O</u> •	Min	or principal ess, T/sq ft	σ3	0.5	1.5	3.0	
tan • =	Max	deviator (01-03) _{max}		1.39	1.46	
c = 0.72 T/sq ft	Time	to failure, min	tf		22	16	
		of strain, cent/min		0.15	0.10	0.11	-
Method of saturation							
	Ult	deviator ess. T/sq ft (01-03) _{ult}				
Controlled stress	ī		Do	1.40	1.40	1.40	
X Controlled strain	Ini	cial height, in.	Но	3.00	3.00	3.00	
Type of test Q Type of spe	ecime	n undisturbei)				
Classification PLASTIC CLAS	(CH			few l/l	6" to 1	/8" dia	.shells
LL 75 PL 24		PI 51	T			G ₈ 2.7	
Domanka		Projectik. PON	Т-	LA & VIC	-HURR -	PROT. (70)
Remarks		ORLEANS PARIS					
		AreaGDM NO 2,					
		Boring No. 2-OU			Sample No		
		-Bepth -66.3				Dec. 197	' 0
		- 1		L COMPRESS			

										
٠,	3			3						
14	,					(3)				
T/sq ft								 	 	::::::: :::::::::::::::::::::::::::::
E			╁┼┼┼┼┼┼			\				
ı				7				 		[]
3,	_	A 11 (3) 1	 	2						
١٥	2			2						
Ι'.				•		***		111111		
2						+++				
1				ີ						
9		一个一个				+++	2			
9	1			1		111				
뀵	•		 	-		†				
				1						
Įğ –				}		X				
Deviator Stress,			m m)		A+A		N 1/ 1	┦┦┦┩	
Ę			┋┋	_	<u> </u>	\mathbf{H}				
Ä	0			C	0 1		2	3	4	5
	•									
					Nor	ma.I.	Stress,	7, T/8Q 1	sat 1 =	896
		F	 				_		501.8=	
1				Tes	t No.		1	2	3	Avg.
l				\Box	Water content		92.9 %	87.4 %	95.3%	
l					water content	₩ _O	7~ 0 7 70	C 1 04 70	77.0770	91.9 %
l				ᆲ	Void ratio	eo		0 08	0.37	
l				Initial		-0	2.24	2.08	2.31	
l				티티	Saturation	s _o	99.1 %	100+%	98.6 %	1 %
				"	Dry density,	—				
1					lb/cu ft	$r_{ m d}$	46.0	48.5	45.1	
				มู	Water content	w _C	%	%	%	%
				Shear	Void ratio	ec				
				Before	Saturation	s _c	%	%	%	96
		0 5 10	15 20	육	Final back pres-					
l		•		Ã	sure, T/sq ft	u _o	·			1
		Axial Str	rain, %	돃	Water content	v _f	%	%	%	%
<u> S1</u>	ear	Strength Par	rameters	Final	Void ratio	ef				
1		- 0		Min	or principal	σ ₃	0.5	1 5	3.0	
l		*	-		ess, T/sq ft			1.5	J.0	
l t	an	• =		Max	deviator ess, T/sq ft (01-03) _{me} v	1.45	1.40	1.58	!
										
		c = <u>0.72</u>	_T/sqft		e to failure, min	tf	31	31	31	·
l				Rate	e of strain,		0.09	0.09	0.09	
Me	tho	d of saturati	lon	per	cent/min		0.09	0.09	0.09	
] .
		 .		1111+	deviator 1/2 -	١ .				
Ι.				str	deviator ess. T/sq ft (01-03	ult				1
1.		Controlled	stress	r –	tial diameter, in.	Do		1.40	1.40	
4						-	1.40	1.40	1.40	
	X	Controlled	POLATI	Init	tial height, in.	Нo	3.00	3.00	3.00	''
 	-	of to-t	Man		TINITA TOMOTOR OF SHE					'
	pe	of test Q	Type or spe	ecime	n UNDISTURBEI	,				
CI	888	ification PI	ASTIC CLA	Y(CH	I),dark gray, co	nta	ins larg	ge amoun	ts of o	rganic*
	, 1		PL 46		PI 90				G	29
Re	mar	ks _*matter	·		Project LK. P(ONT.	,LA.,&	VICHU	RR. PRO	r. (70)
_					ORLEANS PARIS	SH I	AKEFRON	T LFVEE	WEST OF	FIHNC
<u> </u>					Area GDM #2	2, 5	SUPP. #5	(OUTFA	LL CANA	LS)
_					Boring No. 2-0	OUE		Sample No	. 19-1)
l						I		Date 7	Dec.,19	70 l
1 -					_		L COMPRESS			
					TES TRI	wvry	T COMPRESS	TON TEST	TETOVI	

						_	-					
	2.0	anira				2		Н	++	++1+++	;	
	4.0											
			٠		E							
ᇤ	1.5			<i>3</i>)	1/SQ							
1/80												
, t		7			, s,							
SS,	1.0	J	40-4-		Ē	1						
STR	1.0	9		2)	STRENGTH,							
SHEAR STRESS, τ,					S S							
IS.	0.5	6			SHEAR			0				
	0.5				S							
ı												
l	•					0						
1	0						0	1		2		3
1								NOR	MAL STRESS,	σ, T/SQ FT	1.1 1	
5	- 60				Г		<u> </u>			- 5	91.8=11	//
0	00				T	EST	NO.		1	2	3	Avg.
×				50 /			WATER CONTENT	Wo	44.9 %	55.6 [%]	40.2%	46.9%
Ž Ž	- 40		18				VOID RATIO	e _o		25.0		46.7
MATIC	•			3)	I I		5.17(0.1		1.20	1.38	1.13	~
VERTICAL DEFORMATION, IN.	- 20	6/				-	SATURATION	S _o	99•9 %	100+ %	95.0 %	%
N S					L		DRY DENSITY, LB/CU FT	γa	75.6	70.1	78.3	
VERTI	0						RATIO AFTER	e _c				-
		0.1	0.2 0.3	0.4 0.5			FOR 50 PERCENT ISOLIDATION, MIN	t ₅₀	2	3	<1	
		HORIZ.	DEFORMAT	ION, IN.			WATER CONTENT	$\mathbf{w}_{\mathbf{f}}$	50.5 %	34.9%	33.5%	%
				•	I A Z	I WE	VOID RATIO	e _f				•
			I PARAMETI	ERS	-	ľ	SATURATION	Sr	%	%	%	%
ļ	ϕ'	= 3	<u>o°</u>				MAL STRESS,	σ	3.0	2.0	3.0	
	TAN φ' :	_ 0.3	576	-	⊢	_	FT IMUM SHEAR		1.0	2.0	3.0	
	ر)	T/SQ FT	S	TRE	SS, T/SQ FT	max	0.58	1.12	1.73	
	c		,	1/ 5Q FI			JAL TIME TO JRE, MIN	tf	2190	2310	2700	
	CONTROLLE	D STRESS			R/	ATE	OF STRAIN, IN./MIN		•00018	•00018	.00018	
X	CONTROLLE	D STRAIN		,			MATE SHEAR SS, T/SQ FT	ult	٠			
TYPE	OF SPECIME	N		IINT	ייפדר	יווי	RBED		3.00	N. SQUARE	0,625	IN. THICK
CLASS	SIFICATION	T,EAN	CT.AV(C		٠.		ntains sand st	rot			<u>Un</u> UE)	
ш	20	<u> </u>	PL		, ,			1200	a .		G _s 2	.67
	39		,,,	16.		+				· · ·		-
REMAR	RKS	· .				_	PROJECT LK. PONT. I					
						-	ORLEANS PAR					
						· 1	AREA IHNC; G.D.					
						L	BORING NO. 2-OUE			APLE NO.	11 -	
							m 11	0.9	DAT	15	Dec. 19	70
						-	BWG D	IRE	PARA	EST-REPOR	TEST S	下た「YAOO

			. i.					/
4.0		1		1111	<u> </u>			
l_								
g 3.0	85	3						
2.1/so					•			
	E E	٠ _						
ž 2.0	Sirengir	2						
R SI								
SHEAR STRESS,	, Paragraphic States of the st							
1. 0) 	1						
0		(0 1	2	3	<u>L</u>	5	6
1			0 1		MAL STRESS,	σ. T/SQ FT		_
m - 20					·	· <u>5</u>	at. 8 = 1	23.9
		TES	T NO.		1	2	3	Aug.
×	*************************************		WATER CONTENT	\mathbf{w}_{o}	22.2%	22 2 %	22 1. %	
$\begin{vmatrix} \mathbf{z} \\ \mathbf{z} \end{vmatrix} - 1 $					23.3 "	23.3 %	23.4 %	<i>23</i> .3%
VIIO		INITIAL	VOID RATIO	e _o	0.693	0.677	0.684	
J. S.		₹	SATURATION	So	89.4 %	91.5 %	91.0%	%
M O			DRY DENSITY,	γd				
CAL	N (3)		LB/CU FT		98.1	99.0	98.6	
VERTICAL DEFORMATION, IN. X 10			ID RATIO AFTER NSOLIDATION	e _c		٠.		
1	0 0.1 0.2 0.3 0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀				
	HORIZ. DEFORMATION, IN.		WATER CONTENT	w _f	25.6%	25.6 %	24.3%	%
SHEA	IR STRENGTH PARAMETERS	FINAL	VOID RATIO	e _f				
			SATURATION	St	. %	%	. %	%
φ	' = <u>35°</u>	NO	RMAL STRESS,	σ		0.0	2.0	
TAN φ	0.705		XIMUM SHEAR	<u></u>	1.0	2.0	3.0	· ;
	0		ESS, T/SQ FT	max	0.72	1.41	2.50	
,	1/SQ FT		TUAL TIME TO LURE, MIN	t,	600	900	690	
<u>·</u>	; + :	\vdash	E OF STRAIN, IN./MIN	<u>. </u>				
CONTRO	LLED STRESS	<u> </u>		· ·	.00018	•00018	•00018	
X CONTROL	LLED STRAIN		IMATE SHEAR ESS, T/SQ FT	fult				
TYPE OF SPECIA	undisturbei)			3.00	N. SQUARE	0.550	IN. THICK
CLASSIFICATION	SAND(SP), light gray,	С	ontains shell i	frag	ments 1	/4" in 6	diameter	•
u NP	PL NP		PI NP			· .	G. 2.6	
			PROJECT LK.PONT.	T.A	& UTC	ב מווע	200	
REMARKS					 			
···	· · · · · · · · · · · · · · · · · · ·	—	ORLEANS PARISH					
-			AREA G.D.M. #	2,S				LS)
	*.		BORING NO. 2-OUE			APLE NO. 13.		20
			EL 4107		DAT		Dec. 197	
		_		IREG	a shear f	est repoi	77 57 80	perter y e sale s
ENG FORM		-	9		- G	PO : 1966 OF-21	4-945	PLATE IX-3

		041.0	- /0	7.1	
Type of Specimen UNDISTURBED	Before	Before Test			
Diam 4.25 in. Ht 1.163 in.	Water Content, wo	50.5	%	w _f	%
Overburden Pressure, po T/sq ft	Void Ratio, e	1.39		e _f	
Preconsol. Pressure, pc 2.52 T/sq ft	Saturation, So	98.2	%	Sf	%
Compression Index, C _c 0.9/	Dry Density, 7 _d	70.7	b/ft ³		
Classification PLASTIC CLAY(CH), *	k ₂₀ at e _o =	× 10 0	m/sec		
LL _ G _s 2.71 From Q	Project LK. PONT	LA. &	VIC.	-HURI	R. PROT. (70)
PL _ D ₁₀	ORLEANS PARISH				,
* Remarks gray, contains a few	Area GDM #2; SU			-	
1/16" to 1/8" dia. shells	Boring No. 2-01	JE	Sample	No.	17-C
	Bepth El -66.3		Date 5	5 Jar	naary,1971
	JDB CONSOLI	DATION	TES	ST F	REPORT

_				_						
	1.6			2						
1/SQ FI	1.2		s, 1/SQ FI							
SHEAR STRESS, 1, T/SQ FI	0.8		STRENGTH,	1	3					
SHE	0.4		SHEAR			9-				
	0			0	ð	1		2		3
i,			_			NOR/	MAL STRESS,	σ, T/SQ FT	5at.8=	86.1
0/	- 60	3		rest	NO.		1_	2	3	Avg.
VERTICAL DEFORMATION, IN. X 10	- 40				WATER CONTENT	w _o	133.1%	131.4	130.2%	131.6%
ATION	- 40			INITIAL	YOID RATIO	e _o	3.20	3.13	3.10	
EFORM.	- 20			-	SATURATION	S _o	1004%	100+ %	100+ %	%
CALD	- 20	A 3			DRY DENSITY, LB/CU FT	γα	36.7	37.3	37.6	
VERT	0		Ļ	(0)	RATIO AFTER	e _c				
		0 0.1 0.2 0.3 0.4 0,			FOR 50 PERCENT ISOLIDATION, MIN	t ₅₀	17	31	12	·
		HORIZ. DEFORMATION, IN.			WATER CONTENT	w _f	85 •3 %	72.9 %	69.0 %	%
	SHEAR	STRENGTH PARAMETERS		FINAL	VOID RATIO	e _f				
	"·	=/8°			SATURATION	Sr	%	%	%	%
			_ [1	T/S	MAL STRESS,	σ	1.0	2.0	3.0	
		0	!	STRE	33, 1/30/11	max	0.37	0.66	0.89	
		=T/SQ FT			UAL TIME TO URE, MIN	tf	750	900	630	,
[CONTROLL	ED STRESS	\vdash		OF STRAIN, IN./MIN		.00019	.00019	.00019	
	CONTROLL	ED STRAIN			MATE SHEAR SS, T/SQ FT	ult			1=0.625	
TYP	PE OF SPECIME	N UNDI	STU	RB	ED		3.00	N. SQUARE	243=0.7	181. THICK
CL	ASSIFICATION	PLASTIC CLAY(CH),g	ray	,	contains rootl	ets			7,	
ıı	138	PL 36			PI 102				G _s 2	.47
REM	ARKS	·		_	PROJECT LK.PONT	.LA.	& VIC.	- HURR	PROT.	(70)
_ _				- -	ORLEANS PARIS	H LA	KE FORN	T LEVEE	WEST O	F THNC,
			• • • • • • • • • • • • • • • • • • • •	-	BORING NO. 3-0U	W	SAA	APLE NO. 4-	<u>B</u>	
-				_			T SHEAR T	0	Dec. 1	970

I JUN 65 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE STRANSLUCENT)

			- F						
2.0	0			2					
_		3 4							
E 05	5								
7.7.									
1.	0 📈			1					
SHEAR STRESS, 7, T/SQ			.		9				
ν O•	5	# C 2	;						
0				8	<u> </u>	<u> </u>	2		3
					NO	RMAL STRESS,	σ, T/SQ FT 	at.8 = 1	26.5
£-01	°	**	TES	ST NO.		1	2	3	Avg.
		3		WATER CONTENT	wo	22.7 %	22.7 %	22.9 %	22.8%
NOE - 1	0		INITIAL	VOID RATIO	e _o	0.617	0.618	0.618	
VERTICAL DEFORMATION, IN. X O •		3	ĮΞ	SATURATION	S _o	97.9 %	97 .7 %	98 .6 %	%
O SAL DEF				DRY DENSITY, LB/CU FT	γα	102.7	102.6	102.6	
- KERTE	<u>, </u>			DID RATIO AFTER DISOLIDATION	ec				
'	0 0.1	0.2 0.3 0.4 0.5		NE FOR 50 PERCENT INSOLIDATION, MIN	. t ₅₀		·		
	HORIZ	. DEFORMATION, IN.		WATER CONTENT	wf	21.6%	21.6 %	21.5%	%
SHE	AR STRENGT	TH PARAMETERS	FINAL	VOID RATIO	e _f				
		<i>33°</i>		SATURATION	St	%	%	%	%
		The state of the s	T/5	DRMAL STRESS, SQ FT	σ	1.0	2.0	3.0	
IAN 6	» =	0		XIMUM SHEAR RESS, T/SQ FT	τ _{max}	0.73	1.29	1.88	`
	c =	t/SQ FT		TUAL TIME TO	tf	1110	840	1500	
CONTRO	OLLED STRESS		\vdash	TE OF STRAIN, IN./MIN		•00019	•00019	•00019	
X CONTRO	OLLED STRAIN			TIMATE SHEAR RESS, T/SQ FT	Tult				
TYPE OF SPECI		UNDISTURE			·	3,00	IN. SQUARE	0.560	IN. THICK
CLASSIFICATIO	SILTY	SAND(SM), gray,	co	ntains traces	of	organic	materia	l and sr	nall*
ш _	· : ··· ·	PL _		PI			· · ·	G ₅ 2.66	,
REMARKS	shells		<u>.</u>	PROJECT LK. PON	T.LA	& VIC.	- HURR.I	PROT. (70)
				ORLEANS PARI		KE FRON		. ,	
									ر دسد.
	· ·			3=00		DA	MPLE NO. 6		
				WJH - 13.			200	1970	
			_	1011	DIRE	CT SHEAR T	EST REPO	RT	,

ENG FORM
1 JUN 65 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE (ATRANSLUCENT) SOLOLOGO 伊拉思中 SECT [PLATE IX-3]

				2	7					
	2.0.		3							
		*	A E							
E		(3)							4	
ပ္လ	1.5	A	<u> </u>	•				70		
7, T/SQ			•							
		3	STRENGTH.	1						
I K	1.0		Ž	•						
SHEAR STRESS,							111111			
黑			SHEAR							
"	0.5									
l										
				^						
	0			0	0	7		2		3
l					•	NOR	MAL STRESS,	σ, T/SQ FT		-
2	00							54	1.8=12	5.3
6-0	- 20			TES	T NO.		1	2	3	Avg.
×					WATER CONTENT	w _o	00.7%	07.0%	00 0 %	23.8%
ΙŽ	- 10					ļ	23.7%	23.8 %	23.8 %	23.8 %
ATIO			A	INITIAL	VOID RATIO	e,	0.658	0.655	0.662	
VERTICAL DEFORMATION, IN. X 10	0	4	3)//	Z	SATURATION	S _o	96.2 %	97.0 [%]	96.0 %	. %
AL D	Ť		3	7	DRY DENSITY, LB/CU FT	γa	100.5	100.7	100.3	
VERTIC	+ 10	NO ST			ID RATIO AFTER NSOLIDATION	e _c				
		0 0.1 0.2 0.3	0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀				
		HORIZ. DEFORMATI	ON, IN.		WATER CONTENT	Wf	23.5%	23.1 %	23.1 %	. %
	CHEAD	STRENGTH PARAMETE	Inc	FINAL	VOID RATIO	e _f				
		= 360			SATURATION	Sf	%	%	%	%
		= 0.720	•		RMAL STRESS, SQ FT	Ġ	1.0	2.0	3.0	
	TAN φ'	=			XIMUM SHEAR RESS, T/SQ FT	Tmax	0.73	1.44	1.97	
	c'	=	r/SQ FT		TUAL TIME TO LURE, MIN	tf	960	750	1470	
				RAT	E OF STRAIN, IN./MIN	•	.00019	.00019	.00019	
	CONTROLL				IMATE SHEAR	τ _{uit}	#300 <u>1</u>)	# COOL)	# 000x7	
TY	PE OF SPECIME			<u> </u>	ESS, 1/5Q FI		2.00.1	N. SQUARE	0.7/0	IN. THICK
-				רתע	ISTURBED	-	3.00		0.560	and there
L CL	ASSIFICATION	SILTY SAND(SM),gray	<u>, c</u>	ontains small	frag	ments c	of shell	s	
u	. - .	ŘL	-		PI _		· .		G, 2.6	7
REA	AARKS				PROJECTLK. PONT.	LA.	& VIC.	- HURR.	PROT.	(70)
1-			·		ORLEANS PARIS	H L	AKE FRON	मनपन्ना भा	WEST O	F THNC
1-	-	<u>·</u>			AREA G.D.M. #				TFALL C	
-				 .	BORING NO. 3-OUW	3		APLE NO.	7-D	anam.j
1-					DEPTH- EL - 18.8	}	DAT	E 8 Dec	1970	
-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_			T SHEAR T			
					חוד	ונויני א	TO2 25	LS TEST	RT L SECTI	118

ENG FORM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE (TRANSLUCENT)

PLATE IX-3

PREVIOUS EDITIONS ARE OBSOLETE. (TRANSLUCENT)

PREVIOUS EDITIONS ARE OBSOLETE.

(TRANSLUCENT)

3 4 2 4

8=104.6
Avg.
48 55 %
2 % %
4.
% %
8 8

8 8
)
31
21
1
40
00
00
oo mall*
and small* 69 From 11-C
and small* 69 From 11-0
and small* 69 From 11-0 Consol. 70
and small* 69 From 11-0 Consol. 70 T OF IHNC;
and small* 69 From 17-C Consol.

Deviator Stress, $\sigma_1 - \sigma_3$, $T/8q$ ft.	10 (c)	2	l Nor	mal	2 Stress,	3 5, T/sq f	\$ 9T. 2	X=126.6
	Tes	st 1	io		1	2	3.	Avg.
		We	ter content	w _O	22.0 %	21.8%	23 . 5 %	22.4%
	181	Vo	oid ratio	eo	0.643	0.640	0.686	
	Cnitial		ituration	so	92.4 %	92.0%	92.5%	- %
			y density, cu ft	$\gamma_{\rm d}$	102.6	102.8	100.0	
	มู	$\overline{}$	ter content	₩c	%	. %	%	%
	Shear	Vo	oid ratio	ec				
	Before		turation	s _c	%	%	%	%
0 5 10 15 20			nal back pres- ure, T/sq ft	чo				
Axial Strain, %	-	ter content	wf	%	%	- %	%	
								
Shear Strength Parameters	Final	V	oid ratio	ef				l
Shear Strength Parameters	Min	or	principal	e _f	0.5	1.5	3.0	
	Min	or	principal , T/sq ft	σ3	· · · · · · · · · · · · · · · · · · ·	1.5	3.0 1.22	
• = <u>0</u> • tan • = <u>0</u>	Min str Max str	ess ess ess	principal , T/sq ft viator , T/sq ft (σ_1 - σ_3 o failure, min	σ3	0.94		_	
tan • = 0 c = 0.61 T/sq ft	Min str Max str	ess ess ess	principal , T/sq ft viator , T/sq ft (σ_1 - σ_3 o failure, min	σ ₃	0.94	1.21	1.22	
• = <u>0</u> • tan • = <u>0</u>	Min str Max str	ess ess ess	principal , T/sq ft viator , T/sq ft (\sigma_1-\sigma_3	σ ₃	0.94 42	1.21 33	1.22 26	
tan • = 0 c = 0.61 T/sq ft Method of saturation	Min str Max str Tim Rat per	de te cen	principal , T/sq ft viator , T/sq ft (σ1-σ3 o failure, min f strain, t/min	σ ₃) _{max}	0.94 42 0.36	1.21 33	1.22 26	
tan • = 0 c = 0.61 T/sq ft	Min str Max str Tim Rat per	ess ess e t	principal , T/sq ft viator , T/sq ft (σ_1 - σ_3 o failure, min	σ ₃) _{max}	0.94 42 0.36	1.21 33	1.22 26	
tan • = 0 c = 0.61 T/sq ft Method of saturation	Min str Max str Tim Rat per Ult str	de ess e t e cen	principal , T/sq ft viator , T/sq ft (σ ₁ -σ ₃ o failure, min f strain, t/min eviator , T/sq ft (σ ₁ -σ ₃	σ ₃) _{max} t _f	0.94 42 0.36	33 0.46	1.22 26 0.58	
tan • = 0 c = 0.61 T/sq ft Method of saturation Controlled stress	Min str Max str Tim Rat per Ult str Ini	or ess de ess e t	principal , T/sq ft viator , T/sq ft (σ ₁ -σ ₃ o failure, min f strain, t/min eviator , T/sq ft (σ ₁ -σ ₃ l diameter, in. l height, in.	σ ₃) _{max} t _f D _o H _o	0.94 42 0.36	1.21 33 0.46	1.22 26 0.58	
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain	Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft (\sigma_1-\sigma_3\) o failure, min f strain, t/min eviator T/sq ft (\sigma_1-\sigma_3\) l diameter, in. UNDISTURB	o ₃) max t f D _o H _o	0.94 42 0.36 1.40 3.00	1.21 33 0.46 1.40 3.00	1.22 26 0.58 1.40 3.00	
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specific specific strain	Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft (\sigma_1-\sigma_3\) o failure, min f strain, t/min eviator T/sq ft (\sigma_1-\sigma_3\) l diameter, in. UNDISTURB	o ₃) max t f D _o H _o	0.94 42 0.36 1.40 3.00	1.21 33 0.46 1.40 3.00	1.22 26 0.58 1.40 3.00	From Consol.
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min eviator t T/sq ft o 1-03 l diameter, in. l height, in. UNDISTURB ay, contains a	og) max tf	0.94 42 0.36 1.40 3.00	1.21 33 0.46 1.40 3.00	1.22 26 0.58 1.40 3.00	
tan • = O c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(C	Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min viator , T/sq ft (\sigma_1-\sigma_3) diameter, in. UNDISTURB ay, contains a PI Project_K, PON	σ ₃) _{max} t _f) _{ult} D _o H _o ED T _• ,	0.94 42 0.36 1.40 3.00	1.21 33 0.46 1.40 3.00	1.22 26 0.58 1.40 3.00 ide ^G ₈ 2.70	1970
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min viator T/sq ft o 1-03 l diameter, in. l height, in. UNDISTURB ay, contains a PI Project_K, PON ORLEANS PARI	o ₃)max tf D ₀ H ₀ ED T.,	0.94 42 0.36 1.40 3.00 race of	1.21 33 0.46 1.40 3.00 iron ox:	1.22 26 0.58 1.40 3.00 ide G ₈ 2.70 PROT	1970 F IHNC;
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min viator , T/sq ft (\sigma_1-\sigma_3) diameter, in. UNDISTURB ay, contains a PI Project_K, PON	Jult Do Ho ED SH 2:5	0.94 42 0.36 1.40 3.00 race of	1.21 33 0.46 1.40 3.00 iron ox:	1.22 26 0.58 1.40 3.00 ide G _s 2.70 PROT	1970 F IHNC; ANALS)
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min eviator T/sq ft o 1-03 l diameter, in. UNDISTURB ay, contains a PI Projectk. PON ORIEANS PARI Area GDM NO. Boring No. 4-0 Depth	Jult for transfer tra	0.94 42 0.36 1.40 3.00 race of	1.21 33 0.46 1.40 3.00 iron ox: CHURR. IT LEVEE -5 (OU Sample No.	1.22 26 0.58 1.40 3.00 ide G _S 2.70 PROT WEST 0 TFALL C	1970 F IHNC; ANALS)
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max Str Tim Rat per Ult str Ini Ini	or ess de ess e t e o cen	principal , T/sq ft viator , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min eviator T/sq ft o 1-03 l diameter, in. UNDISTURB ay, contains a PI Project N. PON ORLEANS PART Area GDM NO. Boring No. 4-0 Depth El -64.0	Jult Do Ho ED CSH	0.94 42 0.36 1.40 3.00 race of	1.21 33 0.46 1.40 3.00 iron ox: CHURR. IT LEVEE -5 (OU Sample No.	1.22 26 0.58 1.40 3.00 ide G _s 2.70 PROT WEST 0 TFALL C 16- Nov. 1	1970 F IHNC; ANALS)
tan • = O o c = O.61 T/sq ft Method of saturation Controlled stress X Controlled strain Type of test Q Type of specification SANDY CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(CLAY(Min str Max str Timm Rat per Ultstr Ini Ini	deress tia	principal , T/sq ft viator , T/sq ft viator , T/sq ft viator , T/sq ft o failure, min f strain, t/min eviator T/sq ft o 1-03 l diameter, in. UNDISTURB ay, contains a PI Projectk. PON ORLEANS PARI Area GDM NO. Boring No. 4-0 Bepth El -64.0	Jult Do Ho EED CSH 2:S	0.94 42 0.36 1.40 3.00 race of LA.&VIO	1.21 33 0.46 1.40 3.00 iron ox: CHURR. ELEVEE 5 (OU Sample No Date 16	1.22 26 0.58 1.40 3.00 ide G _s 2.70 PROT WEST 0 TFALL C 16- Nov. 1 REPORT	1970 F IHNC; ANALS) D

ENG FORM 1 JUN 65 2089 (EM 1110-2-1902)

PREVIOUS EDITIONS ARE OBSOLETE

24 TRANSLUCENT USAEWES SUILS TEST SECTION

	2.0					2						
		7	(3)		E							
SO FI	1.5				1/80							
, 7, 1/		49	0 0		Ŧ,							
TRESS	1.0	8			STRENGTH,	1						
SHEAR STRESS, 7, T/SQ	9.		3		AR STI							
\$	0.5				SHEAR							
	0					0	0	1		2		3
								NOR	MAL STRESS,	σ, T/SQ FT	at.8=12	013
10-3	- 20					TES	ī NO.		ı	2	2	Avg.
×					,		WATER CONTENT	wo	23.6%	23.6 %	23.6 %	23.6 %
VERTICAL DEFORMATION, IN.	- 10	4			,	7	VOID RATIO	e _o	0.692	0.689	0.680	23.6
RWAT						INITIAL	SATURATION	So	91.1%			%
L DEFC	0	6		@ //)		DRY DENSITY, LB/CU FT	γa	98.5	98.7	99.2	
RTICA							D RATIO AFTER	e _c	7007	7.0	770-	
>	+10	0 0.1	0.2 0.	3 0.4 0.	5	TIM	E FOR 50 PERCENT	t ₅₀				
		HORIZ.	DEFORMA			-	WATER CONTENT	wı	22.7%	23.8 %	24.3 %	%
						FINAL	VOID RATIO	.e _t	*.			
		STRENGTH		TERS			SATURATION	Sr	%	%	%	%
		= 3		_			RMAL STRESS, Q FT	σ	1.0	2.0	3.0	
	TAN ϕ'	_ 0. 6		_		MA	KIMUM SHEAR	max.	0.82	1.32	1.93	• .
	٠. د	=	0	_T/SQ FT		ACT	UAL TIME TO	tf	540	600	720	
										.00019		
						MATE SHEAR ESS, T/SQ FT	•0002)	900017	•00027			
TY	PE OF SPECIME	N		UNDISTU	no n			٠, ٠	3.00	N. SQUARE	0.560	IN. THICK
CL	ASSIFICATION	א איינד	AND (SM	-			tains small sh	-11g		<u> </u>	0.000	
u		<u> </u>	PL	<u>-</u>	, –	011	PI _	<u> </u>			G. 2.6	57
DE	MARKS						PROJECT LK. PONT	. , L	A.,& VIC	-HURR	PROT-	1970
_					٠.	_	ORLEANS PARISE	I LA	KEFRON T	LEVEE V	VEST OF	IHNC:
1						AREA G.D.M. #	2,5	UPP.#5(0	UTFALL	CANALS)		
_							BORING NO. 4-OUE	· .		•	5-C	
E1. WJH						16. TU	UPP C	DAT T CHEAD T	ЕЦ 1	10V_1970		
ENG	FORM	. :-					L		T SHEAR T		•	الأغاد ونهاء م
	FORM 209	2 (EM	1110-2-19	006) PREVIOL	JS ED	ITIO	NS ARE OBSOLETE (TRAN	ISLU	PANEMES.	6. 2666173	14-945 C) 1	PLATELIKE

7.6		,	2		TITT	10044400000		ير موسوع مرد مي					
1.6													
		1		15. W. 11. 11. 11. 11. 11. 11. 11. 11. 11.									
t 1.2		08/1											
QS/1,7													
	4												
xã o• 8		1 (2) 5	1				1		·				
STR													
SHEAR STRESS,		SHEAR STRENGTH,											
o•4	30	# # #			191								
			,										
0			. (1		2		3				
					NOR	MAL STRESS.	σ. T/SQ FT						
9			_			,	ي خ	at. 8 = 1	102.6				
- 60			TES	1 NO.		1	2	3	Avg.				
× <u>z</u>				WATER CONTENT	. Wo	58.4%	61.1%	60 ,2 %	59.9%				
- 40			INITIAL	VOID RATIO	e,	1.65	1.65	1.63					
ORWA			Z	SATURATION	So	95.6 [%]	100. %	99.7%	%				
VERTICAL DEFORMATION, IN.	∌ ∕			DRY DENSITY, LB/CU FT	γa·	63.5	63.7	64.0					
VERTIC				D RATIO AFTER NSOLIDATION	e _c								
> 0	0 0.1	0.2 0.3 0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀	<1	2	6					
· 	HORIZ.	DEFORMATION, IN.	٠	WATER CONTENT	w _f	51.4%	38.5%	33.8 %	%				
SUEA	D STOSNICTH	PARAMETERS	FINAL	VOID RATIO	e _f								
				SATURATION	Sr	%	%	%	%				
	= 2			RMAL STRESS, Q FT:	σ	1.0	2.0	3.0					
TAN φ'	=	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		XIMUM SHEAR ESS, T/SQ FT	mex .	0.52	1.05	1.53					
e'	=			TUAL TIME TO LURE, MIN	tr	2100	2220	2100					
CONTROL	LED STRESS		RAT	E OF STRAIN, IN./MIN		00019	•00019	.00019					
	LED STRAIN			IMATE SHEAR ESS, T/SQ FT	$ au_{\mathrm{ult}}$								
TYPE OF SPECIM	EN	UNDISTURE	BED		٠. '	3.00	N. SQUARE.	0.560	IN. THICK				
CLASSIFICATION	PLAST:	IC CLAY(CH), gra		contains small	l sh								
u 62		PL 23		PI 39				G. 2.70)				
REMARKS				PROJECT LK. PONT.	LA.	&VICH	URR.PRO	r. -19 70					
				ORLEANS PARISH					IHNC:				
				AREA G.D.M. #		UPP.# 5	(OUTFAL	LS CANAI					
			AREA G.D.M. # 2.SUPP.# 5(OUTFALLS CANALS) BORING NO. 14-OUE SAMPLE NO. 12-C										
								DATE 30 Nov. 1970					
				EL - 47.05									
		1110-2-1906) PREVIOUS E		WJH D		T SHEAR T	EST REPO	RT	· <u>·</u>				

Pressure, p , T/sq.ft.

PREVIOUS EDITIONS ARE OBSOLETE.

(TRANSLUCENT)

PREVIOUS EDITIONS ARE OBSOLETE. (TRANSLUCENT)

USARWES SOILS THOT EFETICA

Deviator Stress, $a_1 - a_3$, T/sq fr		Nor		Stress,	(O) PLOIS			
	Test			1	2	50T.8=	80.4 Avg.	
		Water content	W _O		305.75	313.3%	299.7%	
	Initial	Void ratio	eo	5.53	6.17	6.25		
	Ini	Saturation Dry density,	So	86.2 %	85.7 %	86.9 %	%	
		lb/cu ft	η _d	19.2	17.5	17.3		
	5 ⊢	Water content	W _C	%	%	%	46	
	· · · L	Void ratio	s _c	*	%	15	%	
0 5 10 15 20	ଜ୍ଞି -	Final back pres-	u _o				-	
Axial Strain, %	┝┷┼	sure, T/sq ft Water content	Wf	4,	1/8	4,	- %	
Shear Strength Parameters	I∄⊦	Void ratio	e _f				. "	
•=_0 •	Mino	r principal ss, T/sq ft	σ3	0.5	1.5	3.0		
tan • =		deviator ss, T/sq ft (01-03)	max		0.14	0.16		
c = 0.07 T/sq ft	L	to failure, min	tf		7 5	122		
Method of saturation	Rate of strain, percent/min			0.13	0.13	0.13		
Controlled stress		deviator ss. T/sq ft (01-03)						
Controlled strain			Do	1.39	1.40	1.39		
	<u> </u>	ial height, in.	но	3.00	3.00	3.00		
Type of test Q Type of spe			RBE	D .				
Classification ORGANIC CLA	Y(OH),brown,	Т			G ₂ 2 01	Consol.	
Remarks Project LK. PONT., LA.&VIC HURR. PROT(70)								
ORLEANS PARISH LAKEFRONT LEVEE WEST OF IHNC Area GDM NO.2.SUPP. NO.5 (OUTFALL CANALS)								
	Boring No. 5-0	-	. 1	Sample No				
		-Bepth El -10.1				6 Nov.	1970	
			AXIA	L COMPRES				

																	7
₹0. 3				=													
7/89		3)	ri ba				焦		///								
£0.2	3) 		#/I					J									
1			, 10 10														
0,1		, , , , , , , , , , , , , , , , , , , 	u	0.0													
T.'o																	
E 0				0.5	1	M	,0	И	2.	0		3,0					
									Nor	mal	Stress	,	σ, Τ/	BQ 1	t 501.8	= 97.3	
			Те	st 1	_	_					1		2		3	Avg.	
			1	\vdash	_		conte			₩ _O			76.7	%	1000	76.89	6
			Cnitial	-	_		tion			e _o	2.14	. 16	2.13 99.		2.14 98.7 %	9	6
			A	Di	гý		nsit			$\gamma_{\rm d}$	54 . 7		54.5		54 .7	, '	_
			18	T			cont	ent		Wc		- %		%	%	9	6
			Shear	\vdash		_	atio			еc					·		
0	5 10	15 20	Before				tion back		8-	s _c		%	ļ	%	%	9	6
	Axial Str	rain, %	<u> </u>	sı	ur	е,	T/sq	ft		u _o	<u> </u>	%	 	%	%		6
Shear Str	ength Par	rameters	Final	\vdash	_		conte			w _f		70	-	70	70	, ,	*
. •=	0		Min	or	pı	rin	cipal sq ft			σ ₃	0.	.5	. 1.	•5	3.0		7
tan • =	0	-					or sq ft	_	1 - 53) _{max}	0.	29	0.	.32	0.31		
	0.15	_T/sq ft					llure		ln	tf	57		1.	1	36		\Box
Method of	saturati	ion	per	cen	it/	min	1				0.14	-	0.1	1 2	0.28	<u> </u>	-
		<u> </u>	ŭĵ.	t de	ev	iat	or sq ft	(o] - σ ₂),,,,			<u> </u>				\dashv
Co	ntrolled	stress					mete			Do	1.40) .	1.39		1.40	 	-
x Co	ntrolled	strain	Ini	tia	u	he	ght,	in.		Но	3.00)	3.00		3.00		
Type of t		Type of sp					NDIS	STUF	BED								
Classific	ation PLA	STIC CLA	(CH),{	gr	ay					·.				_ 		_
IT.	-	PL _			F	PI						· <u>-</u>			G _s 2.75	from 8	<u>₿</u> (
Remarks _																	
	ORLEANS PARISH LAKEFRONT LEVEE WEST OF IHNC;																
	Area GDM NO.2; SUPP. NO.5 (OUTFALL CANALS) Boring No. 5-OUE Sample No. 8-D																
	Depth OC O Date 37 N 3070																
		···········			E	E1 3CH	- -				T COME	RES			REPORT	-210	\dashv
					ц.												

Deviator Stress, d ₁ = d ₃ , T/sq ft	2	Nor		Stress,	3 5, T/sq 1	5 at. 8=	108.7	
	Test	No.		1	. 2	3	Avg.	
	ŀ.,	Water content	₩ _O	+3.3 %	42.6 %	52 . 0 %	46 %	
	Initial		eo	1.21	1.17	1.39		
	H	A CONTRACT OF THE PARTY OF THE	So	95.5 %			%	
		lb/cu ft	ηđ	75.5	76.7	69.7		
	اقا	Water content	W _C	*	*	%	%	
		Void ratio Saturation	e _c	\$	%	%	%	
0 5 10 15 20	월 -	Final back pres-			79		- 7	
Axial Strain, %	 	sure, T/sq ft Water content	ч о	*	- %	%	4	
Shear Strength Parameters	<u> </u>	Void ratio	v _f		. 70		. 79	
• • 0 0	Mino	r principal ss, T/sq ft	σ ₃	0.5	1.5	3.0		
tan • =		leviator ss, T/sq ft (σ_1 - σ_3)			0.61	0.48		
c = 0.3/ T/sq ft	Time	to failure, min	tr		82	21		
	Rate	of strain,		0.13	0.13	0.13		
Method of saturation								
	Ult	deviator ss. T/sq ft (01-03)	ult					
Controlled stress	Init	al diameter, in.	D _o .	1.40	1.40	1.40		
X Controlled strain		lal height, in.	Но	3.00	3.00	3.00		
Type of test Q Type of spe		OHDIDION			" to 1/)+"		
Classification LEAN CLAY(CI	.),gr		at	tered, sh	ells an	d layer	_	
LL 1414 PL 20		PI 24				G _s 2	.67	
Remarks fine sand.		Projectik. PON	Γ.,	LA.&VIC	C HUI	RR. PROI	. 1970	
		ORLEANS PART						
		Area GDM NO.2					ls)	
		Boring No. 5-0	<u>UE</u>		Sample No			
		E1 -47.2	YTA			Nov. 19	70	
	TES TRIAXIAL COMPRESSION TEST REPORT							

Deviator Stress, $\sigma_1 - \sigma_3$, π/sq ft		O 1 Nor	ma.l	2 Stress,	3 σ, T/sq 1	54t.8=				
	Tes	t No.	•	1	2	1	Avg.			
	ᇻ	Water content Void ratio	₩ _O	50.9 %	51.8 %		53.3%			
	Cnitial	Saturation	So	97.8 %	97.4 %	98.0 %	%			
	"	Dry density, lb/cu ft	ηd	69.9	69.2	65.4				
	ä	Water content	wc	%	%	%	%			
	She	Void ratio	е _с							
	Before	Saturation	Sc	*	%	%	%			
0 5 10 15 20	Bef	Final back pres- sure, T/sq ft	uo							
Axial Strain, %	Final	Water content	Wf	%	%	%	%			
Shear Strength Parameters	Void ratio									
• = <u>0</u> •	str	ess, T/sq ft	σ3	0.5	1.5	3.0				
tan • = 0		deviator ess, T/sq ft (σ_1 - σ_3			0.58	0.50				
c = <u>0.270</u> T/sq ft		e to failure, min	tf		15	11				
Method of saturation	per	e of strain, cent/min		0.40	0.27	0.32				
	111+	deviator (gg-	<u>, </u>	ļ			 			
Controlled stress		deviator ess. T/sq ft $(\sigma_1 - \sigma_3)$	olt Do		7 1 5	7 60				
X Controlled strain		tial height, in.	H _o	1.39	1.40	1.39	· · · · ·			
Type of test O Type of spo	<u></u>			3.00	3.00	3.00	1			
Classification PLASTIC CLA		ONDIDIO			nd sand	pockets				
LL - PL -	\ 01	PI -	Ī			G _s 2.69	From 14-B Consol.			
Remarks		Project LK. PO	TI.	LA.&VIC						
ACHALAS		ORLEANS PARI								
		- I		UPP. NO.						
		Boring No.5-OU			Sample No					
		Depth El -	51.	9	Date 1	8 Nov.	1970			
BCH TRIAXIAL COMPRESSION TEST REPORT										

Deviator Stress, $\sigma_1 - \sigma_3$, T/sq ft O T Shear Stress	2		mal	2 Stress, c	3, T/sq 1		102.9
	Test	t No.		1.	2	3	Avg.
		Water content	w _o	59 . 5 %	59 . 9 %	58.5 %	_
	Initial	Void ratio	eo	1.66	1.66	1.63	
	Hai	Saturation Dry density,	so	97 . 5 %	98.1%	97.6%	%
		lb/cu ft	$r_{\rm d}$	63.9	63.8	64.5	
	lear	Water content	Wc	%	96	%	%
	e Sh	Void ratio	e _c	*	. %	96	4,
0 5 10 15 20	Before	Saturation Final back pres-	s _c	70	. 70	. 70	70
Axial Strain, %		sure, T/sq ft Water content	u _o	%	%	%	%
Shear Strength Parameters	Final	Void ratio	W _f	. 70	. 70	. 70	. 70
• = 0 0	Mino	or principal ess, T/sq ft	σ ₃	0.5	1.5	3.0	
tan • = O		deviator ess, T/sq ft (01-03			0.96	0.95	
$c = \frac{0.46}{\text{T/sq ft}}$		e to failure, min	tf		19	33	
Method of saturation	Rate perc	e of strain, cent/min		0.18	0.13	0.07	
Rection of Saturation							
(Oort-131-3 -t	ult	deviator ess. T/sq ft (01-03	_	·			
Controlled stress	Init	tial diameter, in.	Do	1.41	1.41	1.41	
Controlled strain							
Controlled strain	<u> </u>	tial height, in.	Но	3.00	3.00	3.00	
Type of test Q Type of sp	<u> </u>			_	3.00	3.00	
Type of test Q Type of specification PLASTIC CLA	ecime	undist	RBE	D	a. shel	ls	72
Type of test Q Type of spe	ecime	H), gray, contai	RBE	D L∕16" di	a. shel	ls G _s 2.	72
Type of test Q Type of specification PLASTIC CLA	ecime	H) gray, contai	RBE	D L/16" dia LA. & V	a. shel	ls G _s 2.	T1970
Type of test Q Type of specification PLASTIC CLASSIFICATION PLASTIC	ecime	H) grav, contai PI 58 Project PO	RBE	D L/16" di LA. & V AKEFRONT	a. shel VIC HU	ls G _s 2. URR. PRO WEST OF	T1970 IHNC;
Type of test Q Type of specification PLASTIC CLASSIFICATION PLASTIC	ecime	H) grav, contain PI 58 Project N. PON ORLEANS PARIS	RBE	LA. & VAKEFRONT	IC HULLEVEE	ls G _s 2. VRR. PRO WEST OF FALL CA	T1970 IHNC;
Type of test Q Type of specification PLASTIC CLASSIFICATION PLASTIC	ecime	H) grav, contai PI 58 Project PO	RBE	LA. & VAKEFRONT	VIC HU	ls G _s 2. VRR. PRO WEST OF FALL CA	T1970 IHNC; NALS)

			_							
2.0		7	2							
		_								
E 1 C		3								
g 1.5	////	Ø / 1					\$			
7.		s,								
SS, 1 0		E .	1							
SIRES 1.0	46	Ž .	•							
SHEAR STRESS, 7, 1/SQ	<i>E</i>	SHEAR SIKENGIH,			•					
[™] 0•5		SHE.								
0		(0	0	1	1:1111111	2		3	
					NOR	MAL STRESS,	T/SQ FT			
- 60			_				54	5at.8 = 69.5		
		т	EST	NO.	, <u>.</u>	1	2	3	Avg.	
Z X				WATER CONTENT	w _o	361 . 1%	392.4%	379.6%	<i>377.7</i> %	
- 70	(3) O	AFIZ	1	VOID RATIO	e _o	6.99	7.68	7.21		
VERTICAL DEFORMATION, IN. × 10		1		SATURATION	S _o	99.2%	98.1 %	100+ %	%	
- 20				DRY DENSITY, LB/CU FT	γa	15.0	13.8	14.6		
VERTIC				RATIO AFTER	e _c					
0	0 0.1 0.2 0.3 0.4 0.5			FOR 50 PERCENT SOLIDATION, MIN	t ₅₀	1	2	1		
	HORIZ. DEFORMATION, IN.			WATER CONTENT	w _f	227 . 8%	191.8%	126.7%	%	
CHEAD	STRENGTH PARAMETERS	IN A	ואאו	VOID RATIO	e _f					
	= <u>3 4°</u>			SATURATION	St	%	%	%	%	
1	= <u> </u>			MAL STRESS,	σ	1.0	2.0	3.0		
1				IMUM SHEAR SS, T/SQ FT	$ au_{ ext{max}}$	0.70	1.40	1.87		
c'	=			JAL TIME TO URE, MIN	tf	2760	2580	1500		
CONTROLL	ED STRESS	R	ATE	OF STRAIN, IN./MIN		•00018	•00018	.00018		
X CONTROLL				MATE SHEAR SS, T/SQ FT	$ au_{ m ult}$					
TYPE OF SPECIME	N UNDIST	URI	BF	D	٠.	3.00	N. SQUARE	0.748	IN. THICK	
CLASSIFICATION	ORGANIC CLAY(OH), bl									
u 209	PL 130			^{PI} 79				G. 1.	92	
REMARKS			$\left[\right]$	PROJECT LK. PON	T.,L	A.,& VIC	-HURR	PROT	1970	
,			- [ORLEANS PARI	SH L	AKEFRONT	LEVEE	WEST OF	THNC;	
	<u> </u>		-	AREA G.D.M. #	2,	SUPP.# 9	(OUTFA		-	
			-	BORING NO. 5-OUE			APLE NO.	3-B	-	
-	, , , , , , , , , , , , , , , , , , , ,	BWG DIRECT SHEAR TEST REPORT								
				DWG [DIREC	T SHEAR T	EST REPOI		TO8	

2.6		2		1111				111111
1.6								
·	<u> </u>							
E 1.2								
S. 1.2	08/1							
SHEAR STRESS, 7, T/SQ								
8,	STRENGTH,	4						
8•0 sign	7 OX	1						
S S	5					4		
H	The state of the s							
0.4	3			0				
·	//	_						
0		C	-	•	<u> </u>	2		· 3
			0	T	AAA CTDECC	- 7/00 FT		ر
				NOK	MAL STRESS,	0, 1/3Q FI 50	at. 8 = 9	6.8
- 60		TES	T NO.	:				1
9		\vdash		η	1	2	. 3	AVg.
Ž .			WATER CONTENT	w _o	76 .7 %	77.4 %	78 .7 %	77.6%
- 70		ا ـ ا	VOID RATIO	e _o				
AATI		AITIM			2.16	2.18	2.21	
Ö		=	SATURATION	S _o .	97.6%	97.6%	97.9 %	%
VERTICAL DEFORMATION, IN. X 10			DRY DENSITY, LB/CU FT	γa	54.4	53.9	53.5	
ICA		VO	D RATIO AFTER	<u> </u>	7-40-4			
> 0			NSOLIDATION	e _c				-
	0 0.1 0.2 0.3 0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀	10	7	10	
	HORIZ. DEFORMATION, IN.		WATER CONTENT	w _f	58.4 %	49.9 %	46.3 %	%
SHEAR	STRENGTH PARAMETERS	FINAL	VOID RATIO	e _f				
<u> </u>			SATURATION	St	%	%	% .	%
1	= <u>20°</u>		RMAL STRESS,	σ	1.0	2.0	3.0	•
TAN ø'	= <u>0.380</u>		XIMUM SHEAR ESS, T/SQ FT	r _{max}	0.43	0.76	1.00	
c'		AC	TUAL TIME TO	tı				
			LURE, MIN	"	1350	1020	870	
CONTROLL	ED STRESS	RAT	E OF STRAIN, IN./MIN		•00019	•00019	•00019	
X CONTROLL	ED STRAIN		IMATE SHEAR ESS, T/SQ FT	$ au_{ m ult}$,			
TVDE OF COCCUS	NI	L		-		N SOULEDE	1=0.560	AM TUPCY
TYPE OF SPECIME	UNDISTU	RBI	ED	`. 	3.00	N. SQUARE	2&3=0.6	25. IHICK
CLASSIFICATION	PLASTIC CLAY(CH), gra	у_				<u> </u>		
u 98	PL 30		PI 68				G _s 2.7	5
REMARKS	· · · · · · · · · · · · · · · · · · ·		PROJECT LK. PONT .1	و • Aما	& VIC	IURR .PRO	OT1970)
		_	ORLEANS PARIS	t us	A KTETED () NO	משעותו יו	MEGIT OF	THNC.
			AREA G.D.M. #				,	
	·		BORING NO. 5-OUE	٠.و		APLE NO.	8-B	ALL Y
		-	-DEPTH- OC	0	DAT			
			TAT TET			I De	c. 1970	
				JIKEC	T SHEAR T	EDI KEPO	⊼Ι΄ (* 1 2.1.\ 	

ENG FORM
1 JUN 65 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE FRANSLUCENT)

USA EWES SOLIDINGS FIZE IX-3

	2.0					2:					
	Z.U										•
i .								+++++++++++++++++++++++++++++++++++++++			
ᇤ	1.5			4 - 1 - 1 - 4							
7, T/SQ	±07			85							
7, 1				- :							
	1.0	7		5		1 .					
STR	1.0	/ 6		STRENGTH,							
SHEAR STRESS,	A.,	#					i a				
\ <u>¥</u>	0.5			SHE AR							
	0.5										
1											
	0					0 [2]		 			
						0	1		2		3
60			1				NOK	MAL STRESS,	σ, ۱/3Q F1 گ	59t. 8=1	20.8
١	- 30				TES	T NO.		1	2	2	4
×					\vdash	WATER COLUEN				ر م م م	7779.
<u>z</u>	- 20					WATER CONTENT .	Wo	27.8 %	29.7%	28.0 %	28.5-%
N	- 20		10-13	1	NITIAL	VOID RATIO	e _o	0.787	0.809	0.789	
)RWA					Ž	SATURATION	Sq	94.7 %	98 . 4 %	95.1 %	%
VERTICAL DEFORMATION, IN. X / O	- 10		0			DRY DENSITY, LB/CU FT	γ _d .	93.6	92.5		,
TICAL	·				vo	ID RATIO AFTER		7500	7207	93•5	
\ K	0				co	NSOLIDATION	e _c		· · · · · · · · · · · · · · · · · · ·		•
		0 0.1	0.2 0.3	0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀				
		HORIZ.	DEFORMATION,	, IN.		WATER CONTENT	Wt	25.3%	23.8 %	24.3 %	%
	ÉHEAD	STRENGTU	DADAMETERS		FINAL	VOID RATIO	· e _f	,			
			I PARAMETERS			SATURATION	St	%	%	%	%
		= <u>3</u>				RMAL STRESS,	σ	1.0	2.0	3.0	
	TAN ϕ'	_ 0. 6	635		MA	XIMUM SHEAR IESS, T/SQ FT	τ _{max}	0.62	1.27	1.85	
	. c'	=	<u>О</u> т/sq	FT	AC	TUAL TIME TO	t _f				<u>'</u>
						LURE, MIN	"1	1770	1890	2430	
	CONTROLL	ED STRESS			RAT	E OF STRAIN, IN./MIN		•00018	•00018	.00018	
X	CONTROLL	D STRAIN				IMATE SHEAR ESS, T/SQ FT	$ au_{ ext{uit}}$:	<u>.</u>
TYPE (OF SPECIME	N	UN	DISTUR	BE	D		3.00	N. SQUARE	0.560	IN. THICK
CLASS	SIFICATION	SILTY :				ntains small	ba l ls		v(CH) aı		L shell:
u	: _		PL .	· · · · · · · · ·		PI -		32.00	, (-==) ,	G. 2.6	
						PROJECT	7.4		IIm.		
REMAR	RKS	<u>- · · · · · · · · · · · · · · · · · · ·</u>	· · · · · · · · · · · · · · · · · · ·	,	<u> </u>	PROJECT LK. PONT					
			· · · · · · · · · · · · · · · · · · ·		_	ORLEANS PAR				•	
					_	1	-	SUPP.	F 5(OUTE APLE NO.		ALS)
						BORING NO. 5-01		DAT		9 - C	
						EL - 30.				ec <u>. 197</u>	0
<u></u>						WJH		T SHEAR T			CTION
ENG FO		2 (EM	1110-2-1906)	PREVIOUS E	DITIO	NS ARE OBSOLETE (TR	ANSLUC	ENT)	POY 1966'07'-2	TA-5845 ** ***	PLATE IX-

1.6				2				+ +			
_		(3)		<u> </u>							
g 1.2				7							a
1/8				~` ``							
S, 7,		00	9 • •	Ė							
8•0 ∰				J SIKENGIH	•				40		
R SI	/ø			2							
SHEAR STRESS, 7, 7/50	9		1	SHEAK							
0.4	15			,							
0				0							
				U	,	0 .	1		2		.3
6)							NOR	MAL STRESS,	σ, T/SQ FT		
1			•	_	_			<u></u>	<i>5</i>	10t. 8 = 10	3.5
~	(3			TE	EST	NO.		1	2	3	Avg.
Z		18				WATER CONTENT	w _o	57.5 %	57.6 %	56.6 %	57.2%
VERTICAL DEFORMATION, IN. X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				NITIAL		VOID RATIO	e,	1.57	1.60	1.58	
ORWA	#/			Ž		SATURATION	So	98 .9 %	97.2 %	96.7 %	%
- 20	7/					DRY DENSITY, LB/CU FT	γa	65.7	6l ₁ .7	65.3	
VERTIC						RATIO AFTER ISOLIDATION	e _c				
	0.1	0.2 0.3	0.4 0.5			FOR 50 PERCENT ISOLIDATION, MIN	t ₅₀	<1	< 1	4	
	HORIZ.	DEFORMATIO	N, IN.			WATER CONTENT	w _f	46.9%	41.1%	36.0 %	. %
SHEAR	STRENGTH	I PARAMETERS	3	FINAL		VOID RATIO	er				
	= 2	6°			Т	SATURATION	Sı	. %	%	.%	%
	0.4					MAL STRESS,	σ	1.0	2.0	3.0	
	= <u> </u>					IMUM SHEAR SS, T/SQ FT	τ _{max}	0.54	0.98	1.46	
c'	=	т/\$	SQ FT	FA	CTU	JAL TIME TO . URE, MIN	tſ	2070	1560	1560	
CONTROLLI	ED STRESS			RA	ATE	OF STRAIN, IN./MIN		.00019	.00019	.00019	
X CONTROLLE						MATE SHEAR SS, T/SQ FT	$ au_{ m ult}$				
TYPE OF SPECIME	N		UNDIS	TUI	RB	BED	٠.	3.00	N. SQUARE	243-0-8	2ыб. тніск
CLASSIFICATION	PLASTI	C CLAY			_	fissured		* .			
u 71		PL ·	23		T	PI 48				G. 2.	.70
REMARKS			-			PROJECT LK.PON	T.LA.	,&VIC.	HURR.	PROT 1	.970
	,				.[ORLEANS PAR	ISH L	AKEFRON	r levee	, WEST C	F IHNC
	,				. [AREA G.D.M. #	2, SU	PP. # 5	(OUTFA	LL CANAI	s)
			· · · · · · ·	·	1	BORING NO. 5-OU	•		APLE NO.	15-B	
		·····				53.8 − 53.8		DAT	E 2 Dec	1970	
		········		_	-	BWG	DIREC	T SHEAR T	EST REPO	RT	QW SOTA
ENG FORM 209	2 (EM	1110-2-1906) PREVIOUS	EDITIO	ON	S ARE OBSOLETE (TRA	ANSLUC	USAEWE	S SOI)	3-945 1-945	PLATE IX-

ENG FORM 2090

ENG FORM 2090

PREVIOUS EDITIONS ARE OBSOLETE.

(TRANSLUCENT)

ENG FORM 2090

shells

Boring No.

-67.9

5-00E

JDB CONSOLIDATION TEST REPORT

18-D

Date 1 December 1970

Sample No.

Deviator Stress, d ₁ = d ₃ , T/sq ft	2	0 1.0		2.0 Stress,	3.0 5, T/sq :	A.O. N. Saf.	= 96
	Tes	t No.		1	2	. 3	Avg.
		Water content	Wo	76.1 \$			79.7%
	Initial	VOIG PATIO	e _o	2.04	2.22	2.25	
	Ä	Saturation Dry density,	S _o		98.6 % 52.4		%
	S ₄	lb/cu ft Water content	V _C	55•5 %	72.4	51.9 %	%
	Shear	Void ratio	e _c		P	<i>P</i>	~
		Saturation	Sc	*	%	%	%
0 5 10 15 20	Before	Final back pres- sure, T/sq ft	uo				
Axial Strain, %	Ę	Water content	Wf	%	%	46	%
Shear Strength Parameters	Pin	Void ratio	ef				
• - 0 •	str	or principal ess, T/sq ft	σ3	0.5	1.5	3.0	
tan • =		deviator ess, T/sq ft (61-63		0.19~	0.19	0.20	-
c =T/sq ft	1	e to failure, min e of strain,	tf	75	37	128	
Method of saturation	per	cent/min		0.13	0.13	0.13	
	111+	deviator (a-a	`	·			
Controlled stress		deviator ess. T/sq ft $(\sigma_1-\sigma_3)$. 1 -	7 1 -	
X Controlled strain	├	tial height, in.		1.40	1.40	1.40	
Type of test Q Type of spe				3.00	3.00	3.00	
		011010101		212Ma C ==	` els = " "	P '	
LL 93 PL 29	110	H),gray, contair PI 64	ıs r	umerous		ragment G _s 2.7	
	•	ProjectLK. PON	m	T.A 2.777.0	<u>_</u>		
Remarks	·	ORLEANS PARI					
		Area GDM NO.2					
		Boring No. 6.	-		Sample No		
		Depth _4:4				O Nov.	L970
		TES TRL	AXIA	L COMPRESS	SION TEST	REPORT	

٤ .6	3		VA.				
					┼┧┇ ┼┼┼┼╏	 	╎┇╎┊┊ ┩╴┃
	Ľ		W	N	┾╄╂┼┞┼╂	┼┞╽┞ ╏┼┼	
		4 / 1/ /	111				
	말					<u> </u>	
m 4	7 2	╸┠ ┼╏╏╏╏┋┋ ┸╏╬ ┋ ┼┦╏╬┼┼┼┦╏	4++	┡┋┋┋ ┋	┼┼╂┼├┼┽╂	┦┦╏╏┋ ┤┼	╄╂┼┼┼┤
4	_		$\overline{+}\overline{+}$				
	5		111		 	 	
51			+++	┋┋┋┋	╅┋╂┼┼┼╂	╿╏╏┩	╿┋┋ ┼┼┼┦
	-		Π			 	
			* ‡‡	** *******	<u> </u>	;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
		╻ ╏╏╏╏╏	+++	╏┇╏╏╏	┤┼╂┤┊┼┊ ╂	╿╏┋	╎┇╏┞ ┼┼╂
2	ם ב		Ш			 	11 11111
6			###		<u> </u>	<u> </u>	
B			111	╽┇╏┩╵ ┼┇┼┼	╽ ┼╉┼┼┾┼╂	╃┠┪ ┋ ╂ ╁╂╂	┊┋┊ ┼┼┼┨
tor a	Ř	2222222222222	+11			 	
	-		₩		┊┋┋┋	┆┇┆┇┋	
Devlator Stress,	. () 	$A \coprod$				
		7		2	3		
					-/	· .	
		NOI	ma.	Stress,	o, T/sq :	150	t=100
		· · · · · · · · · · · · · · · · · · ·				0541	,,,,,
	Tes	t No.		1	2	3	Avg.
	—	· · · · · · · · · · · · · · · · · · ·	F				
	!!	Water content	W _O	70.2 %	70.0 %	59.4 %	66.5%
	1 - 1	Wedd wedde					
	4	Void ratio	e _o	192	1.90	1.93	
	Initial	Catanantian					7
	#	Saturation	So	99.8 %	100+ %	: 84.0%	%
		Dry density,	7 _d	-0 o	E0 E	E0 0	
		lb/cu ft	1 · a	58.3	58.7	58.2	
	ង	Water content	w _C	1 %	%	%	1 %
	8	Have Compens	l-c	~			. "
	ghe	Void ratio	e _c				
	I L		<u> </u>				
	8	Saturation	Sc	1 %	1/8	1,5	%
0 5 10 15 20	Before	Final back pres-	\vdash				
	1 20 1	-/	լս _o	,	l	ı	l I
	1 7 1	sure, T/sq It	"			l .	ŀ
Axial Strain, %	\mapsto	sure, T/sq ft	 	-	- 4		
Axial Strain, %	\mapsto	Water content	wf	1,5	%	1/8	%
	\mapsto	Water content	٧f	%	%	%	4,
Shear Strength Parameters	Final	Water content Void ratio	 	4	*	%	%
	Finel	Water content Void ratio	w _f		· .		1,
Shear Strength Parameters	Mind stre	Water content Void ratio or principal ess, T/sq ft	w _f e _f	0.5	1.5	%	%
Shear Strength Parameters • = 0 °	Mind stre	Water content Void ratio or principal ess, T/sq ft	w _f e _f	0.5	1.5	3.0	
Shear Strength Parameters • = 0 ° tan • = 0	Mind stre	Water content Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\$\sigma_1 - \sigma_3\$)	w _f e _f σ ₃	0.5 0.48	· .		%
Shear Strength Parameters • = 0 ° tan • = 0	Mind stre	Water content Void ratio or principal ess, T/sq ft	w _f e _f	0.5	1.5	3.0 0.50	
Shear Strength Parameters • = 0 °	Mind stree Max stree Time	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain,	w _f e _f σ ₃	0.5 0.48 18	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = $	Mind stree Max stree Time	Water content Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\$\sigma_1 - \sigma_3\$)	w _f e _f σ ₃	0.5	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters • = 0 ° tan • = 0	Mind stree Max stree Time	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain,	w _f e _f σ ₃	0.5 0.48 18	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = $	Mino stre Max stre Time Rate perc	Water content Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min	wf ef s	0.5 0.48 18 0.19	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = $	Mino stre Max stre Time Rate perc	Water content Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min	wf ef s	0.5 0.48 18 0.19	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = \frac{0}{0} $ $ \tan \phi = \frac{0}{0} $ $ c = \frac{245}{7} \text{ T/sq ft} $ Method of saturation	Minostre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3)	w _f e _f σ ₃) _{max} t _f	0.5 0.48 18 0.19	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = $	Minostre Max stre Time Rate perc	Water content Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min	w _f e _f σ ₃) _{max} t _f	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters	Minostre Max stre Rate perc	Void ratio or principal ess, T/sq ft deviator est to failure, min e of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 \text{deviator} \text{deviator} \text{deviator} \text{designation} \text{deviator} devi	v _f e _f σ ₃) max t _f D _o	0.5 0.48 18 0.19	1.5 0.49 14	3.0 0.50	
Shear Strength Parameters $ \phi = \frac{0}{0} $ $ \tan \phi = \frac{0}{0} $ $ c = \frac{245}{7} \text{ T/sq ft} $ Method of saturation	Minostre Max stre Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3)	w _f e _f σ ₃) _{max} t _f	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters	Minostre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator est failure, min e of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 est failure, min est failure, min ent/min	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters	Minostre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min e of strain, eent/min deviator ft (\sigma_1-\sigma_3) eial diameter, in. eial height, in.	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ft (\sigma_1-\sigma_3) eial diameter, in. eial height, in. UNDISTU	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ft (\sigma_1-\sigma_3) eial diameter, in. eial height, in. UNDISTU	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ft (\sigma_1-\sigma_3) eial diameter, in. eial height, in. UNDISTU	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft cof strain, ent/min deviator ft cof strain, ent/min	wf ef square transfer	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28	
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft cof strain, ent/min deviator ft cof strain, ent/min deviator ft cof strain, ent/min UNDISTU gray PI 63	wf ef s3)max tf	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28 1.40 3.00	•73
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min e of strain, ent/min deviator ft (\sigma_1-\sigma_3) eial diameter, in. eial height, in. UNDISTU	wf ef s3)max tf	0.5 0.48 18 0.19	1.5 0.49 14 0.25	3.0 0.50 14 0.28 1.40 3.00	•73
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator est of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 est of failure, min ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 est of laid diameter, in. est of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 est of laid diameter, in. est of strain, ent/min deviator ess, T/sq ft (\sigma_1-\sigma_3 ess, T/sq ft (\sig	wf ef s3)max tf	0.5 0.48 18 0.19 1.41 3.00	1.5 0.49 14 0.25 1.40 3.00	3.0 0.50 14 0.28 1.40 3.00	.73
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft cof strain, ent/min deviator ft ess, T/sq ft (\sigma_1-\sigma_3 ess,	wf ef og of the state of the st	0.5 0.48 18 0.19 1.41 3.00	1.5 0.49 14 0.25 1.40 3.00	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT	·73 · (70) F IHNC;
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft cof strain, ent/min deviator ft ess, T/sq ft (\sigma_1-\sigma_3 ess,	wf ef og of the state of the st	0.5 0.48 18 0.19 1.41 3.00	1.5 0.49 14 0.25 1.40 3.00	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT	·73 · (70) F IHNC;
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min ent/min deviator ft (\sigma_1-\sigma_3) ess. T/sq ft (\sigma_1-\sigma_3) ess.	wf ef o3) max tf	0.5 0.48 18 0.19 1.41 3.00 0	1.5 0.49 14 0.25 1.40 3.00 TCHUR T LEVEE 5 (OUT	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT WEST OF	·73 · (70) F IHNC;
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min ent/min deviator ft (\sigma_1-\sigma_3) ess. T/sq ft (\sigma_1-\sigma_3) ess.	wf ef o3) max tf	0.5 0.48 18 0.19 1.41 3.00 0	1.5 0.49 14 0.25 1.40 3.00 TCHUR T LEVEE 5 (OUT	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT WEST OF	·73 · (70) F IHNC;
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft of strain, ent/min deviator ft cof strain, ent/min deviator ft cof strain, ent/min UNDISTU gray PI 63 Project LK. P ORLEANS FARI Area GDM NO. Boring No. 6- Devith	wf ef o3) max tf	0.5 0.48 18 0.19 1.41 3.00 0	1.5 0.49 14 0.25 1.40 3.00 ICHUR T LEVEE 5 (OUT	3.0 0.50 14 0.28 1.40 3.00 3.00 G ₈ 2 R. PROT WEST OF	.73 . (70) F IHNC;
Shear Strength Parameters	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ft (\sigma_1-\sigma_3) e to failure, min ent/min deviator ft (\sigma_1-\sigma_3) ess. T/sq ft (\sigma_1-\sigma_3) ess.	wf ef o3) max tf	0.5 0.48 18 0.19 1.41 3.00 0	1.5 0.49 14 0.25 1.40 3.00 ICHUR T LEVEE 5 (OUT	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT WEST OF	.73 . (70) F IHNC;
Shear Strength Parameters = 0	Mino stre Max stre Time Rate perc	Void ratio or principal ess, T/sq ft deviator ess, T/sq ft cof strain, ent/min deviator ft ess, T/sq ft cof strain, ent/min deviator ft ess, T/sq ft cof strain, ent/min UNDISTU gray PI 63 Project LK. P ORLEANS FARI Area GDM NO. Boring No. 6- Depth El -25.2	wf ef og of the control of the contr	0.5 0.48 18 0.19 1.41 3.00 0	1.5 0.49 14 0.25 1.40 3.00 TCHUR T LEVEE 5 (OUT Sample No	3.0 0.50 14 0.28 1.40 3.00 G ₈ 2 R. PROT WEST OF FALL CALL 0.9-D Dec. 1	.73 . (70) F IHNC;

Deviator Stress, $\sigma_1 - \sigma_3$, $T/8q$ ft.	1.0			2.0 Stress,	3.0 5, T/sq:	1.0 1.0	t=/02					
	Test	No.		1	2	3	4	AVG.				
	I . ┝	Water content	_	65.1 %		61.7 \$		62.5				
	1 # -	Void ratio	e _o	1.80	1.66	1.66	1.64					
	" h	Saturation Dry density,	S _o			100+ \$	100+ % 64.0					
	-	lb/cu ft Water content		60.4	63.6	63.7	%	ł				
	⊣ ۾ ا	Void ratio	w _c	- ~				1				
	∟ ⊢	Saturation	Sc	*	%	16	4	1				
0 5 10 15 20		Final back pres- sure, T/sq ft	uo					1				
Axial Strain, %		Water content	¥f	1/2	16	%	%					
Shear Strength Parameters		Void ratio	ef		r		- (
• = <u>0 °</u>	Btre	r principal ss, T/sq ft	σ3	0.5	1.5	3.0	0.5					
tan • =0	Max of stress	leviator ss, T/sq ft (01-03			0.44	0.55	0.48].				
c = _23T/sq ft		to failure, min	tf	53	10	24	75					
Method of saturation	perce	ent/min		0.19	0.22	0.25	0.12					
	1174	deviator /	<u> </u>					1				
Controlled stress		deviator st (01-03		T T	7 10	7.1.0		-				
X Controlled strain		ial diameter, in.	D _O	1.40	1.40	1.40	1.40	┨				
Type of test O Type of sp	<u> </u>		но	3.00	3.00	13.00	3.00	1				
		OHDIOIC	KB					1				
IL 85 PL 30		PI 55				G ₈ 2.7	<u></u>	1				
1		Project LK. Po	יייעוכ	T.A - &VT	C HIIRR			1				
Remarks		ORLEANS PARIS				· ·		,				
		Area GDM NO.2						. [
		Boring No. 6-00				o. 10 - B						
		-D epth E1 -2'	7.4		Date 1	Dec. 19	70]				
	BCH TRIAXIAL COMPRESSION TEST REPORT											

Deviator Stress, $q_1 - q_3$, T_1 sq ft.	2		1 Non		2 Stress, o	3 5, T/sq 1	nt ds	at = /03		
	Tes	t N	о.		1	2	3	Arg.		
		Wa	ter content	Wo	59.8 \$	60.6 %	55.4 %	58.6 %		
	Initial	Vo	id ratio	eo	1.63	1.64	1.48			
	ä		turation y density,	So	98.0 \$		1.5	%		
		11	/cu ft	η _d	63.5	63.1	67.2			
	Shear	_	ter content	w _c	%	%	%	%		
			id ratio	ec	* *	%	4,	1/2		
0 5 10 15 20	Before	FI	nal back pres-	s _c	70	76	70	70		
Axial Strain, %			re, T/sq ft	u _o	1/8	%	%	1/6		
Shear Strength Parameters	Finel	-	ter content	w _f	76	70	70	. 70		
• = 0 °	Min	or	principal	σ ₃	0.5	1.5	3.0			
tan • =0			vistor T/sq ft (61-63)			0.84	0.83	V.		
c = .385 T/sq ft	_		o failure, min	tf		19	23			
·			f strain,		0.14	0.12	0.11			
Method of saturation							· · · · · · · · · · · · · · · · · · ·			
	Ult	de	viator rt (o1-o3	ult						
Controlled stress				Do	1.42	1.42	1.42			
Controlled strain	Ini	tia	l height, in.	Нo	3.00	3.00	3.00			
Type of test Q Type of spe	ecime	n	UNDISTURBEL							
Classification PLASTIC CLAY	(СН),{	gray, contains	SS	cattered	1/8" t				
LL 71 PL 26		_	PI 45				G ₈ 2.	.67		
Remarks *pockets of silt	У		Project LK. Po							
sand		_	ORLEANS PARIS							
		_	Area GDM NO. 2	2	SUPP. NO	. 5 (OU	TFALL C	ANALS)		
		_	Boring No. 6_(Sample No				
		_	-Depth - 46.0				Dec. 19	70		
		JMS TRIAXIAL COMPRESSION TEST REPORT								

Deviator Stress, $a_1 - a_3$, T/sq ft.	Shear Stress, 7, T/sq ft	3 2 1			2 Stress,	3 7, T/sq 1	¥ \$50	ot:=/03			
		Test	No. ater content		1	2 .	3	Avg.			
			oid ratio	₩ _O	58 .6 %	62.3 %	59.5 %	60.1 %			
		S S	aturation	So	99.5 %	100+ %		%			
		_ <u>_</u>	ry density, b/cu_ft	$\gamma_{\rm d}$	65.1	62.9	64.5				
		y W	ater content	w _c	%	%	%	4			
			oid ratio	e _c		-					
0 5 10	15 20	0 I	aturation inal back pres-	Sc	*	%	%	%			
Axial Strai	4 d	· 8	ure, T/sq ft	u _o			<u> </u>				
		3 -	ater content	Wf	\$	%	*	%			
Shear Strength Param		Minor	oid ratio principal	e _f	0.5	3 6	2.0	,			
	1	stres: Max do	s, T/sq ft eviator s, T/sq ft (\sigma_1-\sigma_3)	σ3	0.5	1.5	3.0				
c = .48			to failure, min	t _f	0.89 25	0.94 25	22				
		Rate o	of strain,		0.10	0.10	0.10				
Method of saturation	n ¹	per cer	107 MIH			-					
		Ult d	eviator s. T/sq ft (01-03)	ult							
Controlled st	tress		al diameter, in.	ď	1.40	1.39	1.40				
X Controlled st	train	Initia	al height, in.	Но	3.00	3.00	3.00				
4 1	Type of spec		ONDEDICION					·			
Classification PLASTIC CLAY(CH) gray, contains scattered shell fragments											
III 83	PL 22		PI 61	G ₈ 2.	70						
Remarks Projectik. PONT. LA.&VICHURR. PROT. (70)											
			ORLEANS PARI					-			
1			Area GDM NO 2, SUPP NO. 5 (OUTFALL CANA								
-							No. 17-C				
			Boring No. 6-00	W		Sample No	. 17-C				
			Boring No. 6-00 Depth El -49.	т w 6		Sample No	Dec. 19				

Devlator Stress, o ₁ - o ₃ , T/sq.ft			l Bor		2 Stress, o	3 5, T/sq 1	y sat.	=/06			
	Tes	t N	0.		1	2	3	Avg.			
	_	Wa	ter content	W _O	5.8	53.3 %		54.5%			
	Initial		id ratio	eo	1.53	1.47	1.51				
	日日		turation y density,	So	99.6 %	99.0 \$		%			
	Н	16	/cu ft	7 _d	67.3	68.9	67.9				
	Shear	┝	ter content	w _c	%	%	%	%			
			id ratio turation	e _c	· \$	1,5	4	95			
0 5 10 15 20		Fi	nal back pres-	u _o							
Axial Strain, %	E E		re, T/sq ft ter content	Ë	4	%	%	%			
Shear Strength Parameters	Finel	├	id ratio	₩ _f	, P		. ,				
0 •	Min	or	principal	σ3	0.5	1.5	3.0				
tan • = 0			viator T/sq ft (01-03)			1.00	0.90				
c = 475 T/sq ft	_		failure, min	tf		25	31				
			f strain, t/min		0.18	0.10	0.08	V			
Method of saturation				٠				[.			
	Ult	de	viator (01-03) _{ult}							
Controlled stress			diameter, in.	Do	1.41	1.42	1.42				
X Controlled strain	Ini	tia	l height, in.	Но	3.00	3.00	3.00				
Type of test Q Type of specimen UNDISTURBED											
Classification PLASTIC CLAY(CH), gray, contains 1/16" to 1/8" dia. shells											
LL 83 PL 23			PI 60			G _s 2.73					
Remarks Project LK. PONT. LA.&VICHURR. PROT.(70)											
		_	ORLEANS PARIS	ΗI	AKE FROI	NT LEVE	E WEST (F IHNC;			
		_	Area GDM NO. 2, SUPP. NO.5(OUTFALL CANA								
		_		OUW	7	Sample No	. 18-1	В			
-Depth El -51.9 Date 2 Dec. 1970											
JMS TRIAXIAL COMPRESSION TEST REPORT											

			3											
ដ	3			E		(1)								
T/89				E										
F				<u></u>										
1			1											
m	_	E-		, <u>t</u>										
6	2		. ^	, E										
^L				E				 						
р		11 9 9 3 6		þ				 						
12		98		Ŀ	 		11111	 						
8			1					 						
Ę.	1	Water the second	•											
Ω.				F										
Š				-			1/1111	/ N						
18						N	V							
Deviator Stress,	^	/2222 2222 2222 2222	(ַ בַ			<u> </u>			1100000				
"	0			U	•		2	. ,	4	ا ر				
					Nort	mal.	Stress, o	, T/sq f	t 8 50,	t=100				
			Tes	t 1	io.		1	2	3	Avg.				
				Wa	ter content	₩ _O	69.3 %	63.8 %	68.0%	67.0%				
			Initial	V	oid ratio	eo	1.91	1.74	1.88					
			Int		turation y density,	So	98.0 %	99.0 %	97.6%	%				
					o/cu ft	ηd	58.0	61.5	58.6					
			ear	\vdash	ter content	w _c	51.2 %	41.4 %	40.3%	%				
			She	<u> — </u>	oid ratio	e _c	1.34	1.03	1.02					
		0 5 10 15 20	Before	1	nturation	s _c	100+ %	100+ %	100+%	%				
		, 20 2, 33	B B	ສາ	re, PSI	u _o	78	78	78					
		Axial Strain, %		Pi	ry Density	\mathcal{U}	72.1	83.1	83.6					
Sh	ear	Strength Parameters			oid ratio	ef								
		• = 13 •	str	ess	principal , T/sq ft	σ3	1.0	2.0	3.0					
t	an	• = 0.23	str	ess	viator T/sq ft (01-03)			1.61	2.16					
		c = 0. /4 T/sq ft			o failure, min f strain,	tf	148	131 96						
Me	tho	d of saturation BP	per	cen	t/min		0.06	0.07	0.07					
1														
-			Ult	ess	eviator (o1-o3)	ult								
		Controlled stress			l diameter, in.	Do	1.39	1.39	1.39					
	X	Controlled strain	<u> </u>		l height, in.	Ho	3.00	3.00	3.00					
-		of test R Type of spe												
Classification PLASTIC CLAY(CH), gray, contains numerous 1/2" diameter shells														
Щ	8	PL 25			PI 59 G _s 2.70									
Re	mar	ks		_	Project LK.PON	I, TI	LA. & VI	С НО	RR. PRO	(70)				
1_					ORLEANS PARIS									
_				_			SUPP. #5			ಡ)				
_					D 13	-OU		Sample No						
				_	Dopth -5.2				Decembe	er,1970				
L					TES TRIAXIAL COMPRESSION TEST REPORT									

2.0 1.5 3.0 1.0 3.0 1.0 3.0 3.0 3.0 3.0				^		- 2	/					- O
1.5 1.0 3 5 5 5 5 5 5 5 5 5		2.0										
1.0	E	, c		3	+							
1.0												
1	S, 7, '			(2)	,							
1	STRES	1.0 "	7		RENG							
1	HEAR							10				
1	l s	0.5	1		H.							
1					##	Ś						
1 2 3 NORMAL SIRESS, 0, 1/5Q FT 1 2 3 N/Q		0 -				C	, , , , , , , , , , , , , , , , , , , ,		 			
Test No. 1 2 3 M/9				## #946 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			0	1 NOR	MAI STDESS	-	٠.	3
VALUE CONTENT Value Valu	7	20		3/				14010	T	1.	854	t. = //8
WATER CONTROLLED STRESS CONTROLLED STRESS CONTROLLED STRESS CONTROLLED STRESS CONTROLLED STRESS CONTROLLED STRAIN \	- 30				TES	T NO.		1	2	3	Avg.	
VOID RATIO Co. 0.881 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10 0.883 0.91/10							WATER CONTENT	w _o	33 . 0 %	35.1 %	32 . 6 %	<i>33.</i> 6 [%]
Normal stress	NOIT)	- 20		A 2		TIAL	VOID RATIO	e _o	0.881	0.940	0.883	
Controlled stress	FORM	3.6			70	3	SATURATION	So	100 %	99 .7 %	87.0%	%
Normal stress	AL DE	- 10						γa	88.6	85.9	88.5	
O 0.1 0.2 0.3 0.4 0.5 TIME FOR 50 PERCENT Solution with the form of the	VERTIC	6						e _c				
SHEAR STRENGTH PARAMETERS 330	0								<1	<1	<1	
SHEAR STRENGTH PARAMETERS 330			HORIZ.	DEFORMATION, IN.			WATER CONTENT	wf	30.4 %	30.4%	29.8 [%]	%
SATURATION Sr % % % % % % % % %		SHFAR	STRENGTH	PARAMETERS		FINAL	VOID RATIO	er				
NORMAL STRESS, 0 1.00 2.00 3.00							SATURATION	Sr	%	%	%	%
MAXIMUM SHEAR Tmax 0.62 1.31 2.03		φ * .						σ	1.0	2.0	3.0	
ACTUAL TIME TO FAILURE, MIN 11 11 10 1320 1320 RATE OF STRAIN, IN./MIN		ΤΑΝ φ' ;	=					r _{max}	0.62	1.31	2.03	
CONTROLLED STRESS CONTROLLED STRAIN ULTIMATE SHEAR STRESS, T/SQ FT Tult		c'	=	T/\$Q FT	:			.t _f	1140	1320	1320	
TYPE OF SPECIMEN UNDISTURBED UNDISTURBED UNDISTURBED IN. SQUARE 1&2=0.550 3=0.625 IN. THIC CLASSIFICATION SILT(ML), gray LL 29 PL 27 PI 2 G. 2.67 PROJECT LK. PONT. LA.,& VIC HURR. PROT. (70 ORLEANS PARISH LAKE FRONT LEVEE, WEST OF THNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6=OUW SAMPLE NO. 8=B		ONTROU	ED STRESS			RAT	E OF STRAIN, IN./MIN		٠			
CLASSIFICATION SILT(ML), gray LL 29 PL 27 PI 2 G. 2.67 PROJECT LK. PONT. LA., VIC HURR. PROT. (70 ORLEANS PARISH LAKE FRONT LEVEE, WEST OF IHNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6-OUW SAMPLE NO. 8-B								$ au_{ m ult}$				
CLASSIFICATION SILT(ML), gray LL 29 PL 27 PI 2 G. 2.67 PROJECT LK. PONT. LA., & VIC HURR. PROT. (70) ORLEANS PARISH LAKE FRONT LEVEE, WEST OF THNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6-OUW SAMPLE NO. 8-B	TYPE OF	SPECIME	N	IINDTSTIII	משפי			٠.	2 00 1	N. SQUARE	1&2=0.5	N. THICK
PROJECT LK. PONT. LA., VIC HURR. PROT. (70 ORLEANS PARISH LAKE FRONT LEVEE, WEST OF THNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6-OUW SAMPLE NO. 8-B	CLASSIFIC	CATION	SILT(M		لاتاب			. :	<u></u> ₩₩			
PROJECT LK. PONT. LA., VIC HURR. PROT. (70 ORLEANS PARISH LAKE FRONT LEVEE, WEST OF IHNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6-OUW SAMPLE NO. 8-B	LL				-;		PI 2				G ₈	67
ORLEANS PARISH LAKE FRONT LEVEE, WEST OF THNO AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANAIS) BORING NO 6-OUW SAMPLE NO. 8-B	DEMARKS						PROJECT TW DOW	י חות	A 0 17*	·		
AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS) BORING NO. 6-OUW SAMPLE NO. 8-B	REMARKS	·	· · ·				· !		•			
BORING NO. 6-OUW SAMPLE NO. 8-B			·	· '.		_				,		
DEPTH.	-						BORING NO. 6-OUW		1			
EL = 19.h DATE 1h Dec. 1970			·			 .	DEPTH = 19.	·	DAT	E D. De		
BWG DIRECT SHEAR TEST REPORT						_ '		DIREC	T SHEAR T	•	- ,	
ENG FORM 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE FRANSLUCENT) ES SOFIS TEST SECTION	ENG FOR	M			· ·		, _					Chian

1.6 1.2 0.8 0.1 1.2 0.1 NORMAL STRESS, a, T/SQ FT S at. = 103 NORMAL STRESS, a, T/SQ FT S			111777777					2					_					
1.2 0.8 0.8 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.5 1.5 1.6 1.63 1.63 1.60 1.59 1.61 1.63 1.60 1.6												•6 E	1					
1.2 0.8 0.0 1.2 0.0 1.2 0.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5		++++										E						
0.8 O.1 O.1 O.1 O.1 O.1 O.1 O.1 O	Н								E 20 THE G									
0.8 O.1 O.1 O.1 O.1 O.1 O.1 O.1 O									S									
0														SS				
0	Ħ	- 								+++++++		-		E				
O O O O O O O O O O	3	سمل						1	Ë			F		S, ,				
O O O O O O O O O O	Ħ								, z			8.	C	SES.				
O O O O O O O O O O									Z K			Ė		ST				
0 NORMAL STRESS, σ, T/SQ FT S q t = 103 TEST NO. 1 2 3 AV VOID RATIO PRY DENSITY, LB/CU FT VOID RATIO O 0.1 0.2 0.3 0.4 0.5 HORIZ. DÈFORMATION, IN. SHEAR STRENGTH PARAMETERS σ' = 21° TAN φ' = 0.382 TAN φ' = 0.382 MAXIMUM SHEAR STRESS, T/SQ FT TMAX MAIMUM SHEAR STRESS, T/SQ FT TMAX O 0.11 0.077 1.055												· •		\X				
NORMAL STRESS, \$\sigma\$, \$\tau\$/\$ \$\sigma\$ \$\frac{1}{2}\$ \$	Η								, ¥				^	S				
NORMAL STRESS, 0, T/SQ FT	3					- 4			O•11 19 3 2 2									
NORMAL STRESS, 0, T/SQ FT	H							-	o									
NORMAL STRESS, 0, T/SQ FT	=																	
NORMAL STRESS, 0, T/SQ FT	3	<u> </u>	<u> </u>		<u> </u>			0										
TEST NO. 1 2 3 AV WATER CONTENT Wo 57.1 57.9 58.1 57.7 VOID RATIO e. 1.59 1.61 1.63 SATURATION S. 97.3 97.5 96.6 9 DRY DENSITY, LB/CU FT 7/4 65.3 614.9 , 614.2 VOID RATIO AFTER CONSOLIDATION MIN SHEAR STRENGTH PARAMETERS of = 21 CONSOLIDATION SI WATER CONTENT WI 52.2 146.8 143.3 % NORMAL STRESS, T/SQ FT TMAX 0.011 0.77 1.005		•	•	-		-						F		1				
TEST NO. 1 2 3 AV WATER CONTENT Wo 57.1 57.9 58.1 57.7 VOID RATIO e. 1.59 1.61 1.63 SATURATION S. 97.3 97.5 96.6 9 DRY DENSITY, LB/CU FT 7/4 65.3 614.9 , 614.2 VOID RATIO AFTER CONSOLIDATION MIN SHEAR STRENGTH PARAMETERS of = 21 CONSOLIDATION SI WATER CONTENT WI 52.2 146.8 143.3 % NORMAL STRESS, T/SQ FT TMAX 0.011 0.77 1.005		100	/a a + -	r, T/SQ FT ू	MAL STRESS,	NORA												
TEST NO. 1 2 3 AV WATER CONTENT Wo 57.1 57.9 58.1 57.7 VOID RATIO e. 1.59 1.61 1.63 SATURATION S. 97.3 97.5 96.6 9 DRY DENSITY, LB/CU FT 7/4 65.3 614.9 , 614.2 VOID RATIO AFTER CONSOLIDATION MIN SHEAR STRENGTH PARAMETERS of = 21 CONSOLIDATION SI WATER CONTENT WI 52.2 146.8 143.3 % NORMAL STRESS, T/SQ FT TMAX 0.011 0.77 1.005		703	591. =	0			,	·	r			/_		D)				
WATER CONTENT Wo 57.1% 57.9% 58.1% 57.7 VOID RATIO SATURATION S. 97.3% 97.5% 96.6% DRY DENSITY, LB/CU FT VOID RATIO AFTER CONSOLIDATION, MIN SHEAR STRENGTH PARAMETERS WATER CONTENT Wo 57.1% 57.9% 58.1% 57.7 VOID RATIO E. 1.59 1.61 1.63 SATURATION S. 97.3% 97.5% 96.6% VOID RATIO AFTER CONSOLIDATION, MIN TIME FOR 50 PERCENT CONSOLIDATION, MIN SHEAR STRENGTH PARAMETERS WATER CONTENT Wo 57.1% 57.9% 58.1% 57.7 WO 65.3 614.9, 614.2 VOID RATIO E. CONSOLIDATION WATER CONTENT VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% DRY DENSITY, LB/CU FT VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% PO 64.2 VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% WATER CONTENT VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% PO 64.2 VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% PO 64.2 VOID RATIO E. SATURATION S. 97.3% 97.5% 96.6% NORMAL STEESS, T/SQ FT TMAX O.41 0.57 1.05		l	_				T NO.	TEST	. '			60	-	6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.	77		-		1			4					13				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7%	57.	58-1 %	57 ₋₉ %	57.1 %	w _o	WATER CONTENT	1						Ιż				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			<i></i>	<u> </u>			1		(2)		40		-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.63	1.61	1.59	e _o	VOID RATIO	₹				-		[ᢓ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ni/					-	CATURATION							¥				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	%		96.6 %	97 . 5 [%]	97.3 %	3,	SAIDRAHON				<i>K</i> (3)	00		ű				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						γ ₄		i I	- 20									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			64.2	64.9,	65.3	, "	LB/CU FT	Ш										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						e _c			.]		* *************************************			ĬĔ				
0 0.1 0.2 0.3 0.4 0.5 HORIZ. DÈFORMATION, IN. SHEAR STRENGTH PARAMETERS $ \phi' = \frac{21^{\circ}}{0.382} $ TAN $\phi' = \frac{0.382}{0}$			·				 											
HORIZ. DÈFORMATION, IN. SHEAR STRENGTH PARAMETERS $\phi' = \frac{21}{0.382}$ TAN $\phi' = \frac{0.382}{0.00000000000000000000000000000000000$			٢	2	2	t ₅₀												
SHEAR STRENGTH PARAMETERS $\phi' = \frac{21}{0.382}$ $\tan \phi' = \frac{0.382}{0}$ $\tan \phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ $\cos \phi' = \frac{21}{0.382}$ $\cos \phi' = \frac{1.0}{0.382}$ $\cos \phi' = \frac{2.0}{0.382}$ $\cos \phi' = \frac{1.0}{0.382}$ \cos						· ·			· · · · ·									
SHEAR STRENGTH PARAMETERS $\phi' = \frac{21^{\circ}}{0.382}$ TAN $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ SATURATION S ₁ $\phi' = \frac{0.382}{0.0000}$ MAXIMUM SHEAR STRESS, T/SQ FT Tmax Oolul 0.77 1.05	%		43.3 %	46.8%	52.2%	w _f	WATER CONTENT											
SHEAR STRENGTH PARAMETERS $\phi' = \frac{21^{\circ}}{0.382}$ TAN $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ SATURATION S ₁ $\phi' = \frac{0.382}{0.0000}$ MAXIMUM SHEAR STRESS, T/SQ FT Tmax Oolul 0.77 1.05			, .	-			VOID DATIO	₹										
$\phi' = 21^{\circ}$ 0.382 $TAN \phi' = 0$ 0 $S_{1} \% \% \%$ 0% $NORMAL STRESS, T/SQ FT $						- Fr	VOID RATIO		SHEAR STRENGTH PARAMETERS									
$\phi' = \frac{21^{\circ}}{0.382}$ $\tan \phi' = \frac{0.382}{0}$ NORMAL STRESS, σ $\pi/SQ \text{ FT}$ π	%		. %	%	%	S.	SATURATION											
TAN $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$ MAXIMUM SHEAR STRESS, T/SQ FT Tan $\phi' = \frac{0.382}{0}$ TAN $\phi' = \frac{0.382}{0}$. 70	,,,,			Ш	21°									
TAN $\phi' = \frac{0.382}{0}$ MAXIMUM SHEAR STRESS, T/SQ FT Tmax 0.41 0.77 1.05			2.0	2.0	.3.0							φ =						
O STRESS, T/SQ FT Tmax O.11 0.77 1.05		ļ_,	3.0	2.0	1.0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					0.382	N a' -	1AT					
			1.05	0.77	0.41	Tmax .												
C =				0.00						c' =т/sQ								
FAILURE, MIN tr 960 870 720		<u> </u>	720	870.	960		LURE, MIN	FAIL										
RATE OF STRAIN, IN./MIN			00010	0.000	0003.0		E OF STRAIN, IN./MIN	RATI										
CONTROLLED STRESS			•00013	•000TA	•mm		· · · · · · · · · · · · · · · · · · ·				STRESS	TROLLE	CON					
TONTROLLED STRAIN STRESS, T/SQ FT $ au_{11}$						$ au_{ m ult}$					STRAIN	TROLLED	X CON					
TYPE OF SPECIMEN UNDISTURBED 3.00 IN. SQUARE 3.00 IN. SQUARE 3.00	IICK	- 11 7 . Th	3=0.625	N. SQUARE	3.00 ^l	٠. '	3ED	TYPE OF SPECIMEN UNDISTURBED										
										, .	,	TION	1 ASSISTE					
CLASSIFICATION PLASTIC CLAY(CH), gray								У	ŗa	(CH),g	PLASTIC CLAY		.LAJJINCA	Ľ				
LL PI PI G. 2.71		77	G _s				PI		-					1				
2162		- 1 -												\vdash				
REMARKS PROJECT LK. PONT. LA. & VICHURR. PROT. (70)	(70	R.PROT.	CHUR	LA.& VI	T.	PROJECT LK. POT	.					FMADK6	DE				
					•			-						"				
ORLEANS PARISH LAKE FRONT LEVEE, WEST OF I								-						1-				
AREA G.D.M. # 2, SUPP. # 5(OUTFALL CANALS)			LL CANA	5 COUTTE	SUPP. #	2,	AREA G.D.M. #	— J						1-				
		LS)	222 011-11	7 (0022	- "									1				
DATE 71 D. 7070		LS)					BORING NO. 6-OUW	- 1				•		1-				
			0 - B	APLE NO.	SAA		DOCON.	_				·		-				
USALWES SOILS MEST SINCE BUG FORM GPO: 1966 OF -214-945 BLAT			0-B ec. 197	APLE NO.]	SAA DAT)ı	DEPTH = 27	_						-				

1 JUN 65 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE (TRANSLUCENT)

PLATE IX-3

					-							
2.0		•										
1_				++++								
a 1.5												
1/8												
6	G E			++++								
1.0	9											
ES .												
SHEAR STRESS, 7, 1/50				P								
o _• 5	3											
	#											
i	/											
0		(<u> </u>		-	 	<u> </u>				
- 30			0	1		2		3				
				NOR	MAL STRESS,	σ, T/SQ FT	859t =	122				
E ·		TES	T NO.		1	2	3					
× - 20				Ι				Arg.				
Ž			WATER CONTENT	w.	27 . 0 %	26.8 %	26 . 3%	26.7%				
, NOIL	3/1	INITIAL	VOID RATIO	e _o	0.752	0.746	0.741	,				
VERTICAL DEFORMATION, IN.X		Ī	SATURATION	S _o	95.5 %	95.6%	94.4%	%				
N	0/0		DRY DENSITY, LB/CU FT	γa	94.8	95.1	95.4					
VERTICA O			ID RATIO AFTER NSOLIDATION	e _c								
, ,	0 0.1 0.2 0.3 0.4 0.5		E FOR 50 PERCENT NSOLIDATION, MIN	t ₅₀								
	HORIZ. DEFORMATION, IN.		WATER CONTENT	Wf	26.0 %	25.6 %	24.6%	%				
		FINAL	VOID RATIO	e _f								
SHEA	AR STRENGTH PARAMETERS		SATURATION	St	%	. %	%	%				
<i>\$</i>	=32°		PRMAL STRESS,	σ	1.0	2.0	2.0					
TAN ø	=0.632	-	SQ FT XIMUM SHEAR	1.0	2.0	3.0	·					
	0		ESS, T/SQ FT	max	0.65	1.30	1.79					
	t/ =t/\$Q FI		TUAL TIME TO LURE, MIN	t _f	1020	1380	1200					
		RAT	E OF STRAIN, IN./MIN		.00010	.00019	00010					
	LLED STRESS	ULI	IMATE SHEAR	T	• OOOTA	- COULY	OULT					
X CONTROLLED STRAIN STRESS, T/SQ FT												
TYPE OF SPECIMEN UNDISTURBED 3.00 IN. SQUARE 0.560 IN. THICK												
CLASSIFICATION SILTY SAND(SM), gray, contains small shells												
LL PL PI G 2.66												
REMARKS PROT. (70)												
ORLEANS PARISH LAKE FRONT LEVEE, WEST OF IHNC AREA G.D.M. # 2, SUPP. # 5 (OUTFALL CANALS)												
			PORING NO.	<u>. S</u>		OUTF		ALS)				
		_	BORING NO. 6-0UW		DAT	 	13-B					
			= 35.2				c. 1970	· · · ·				
			BWG US	REG	ESHEAR]	S TEST	SECTI	03				
FNG FORM			105			PO : 1966 OF-21	4-945	DI ATE IV				

1 JUN 65 2092 (EM 1110-2-1906) PREVIOUS EDITIONS ARE OBSOLETE TRANSLUCENT)

PLATE IX-3

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

(EM 1110-2-1906)

TRANSLUCENT

ENG FORM NO. 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

(EM 1110-2-1906)

REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

ENG FORM NO. 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

REV JUNE 1970 2089

ENG FORM NO. REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

		4 .								
4		[†]								
			 				4			
							+++++			
E 2		3								
	•									
2,1,7,0										
i i i i i i i i i i i i i i i i i i i										
2 2 5	1									
STRESS, 7,										
			1							
T T T T T T T T T T T T T T T T T T T			1							
0	,	0 1	2	3),	5	6			
		O.								
		NORMAL STRESS, o, T/SQ FT 501.8 = 122.5								
-10				1	1 1					
2	TES	' NO.		1	2	3	Avg.			
×		WATER CONTENT	w.	26.1 %	05 0 %	3 26.2%	21 1%			
-20			ļ	-U.1 ~	-J•y ~		26./ "			
-30 -30	₹	VOID RATIO	e _o	0.733	0.733	0.740				
	ATTIAL			~	a) a a	-1 - ~	. ~			
lg 30	-	SATURATION	S _o	95.1%	94.3%	94.5 %	%			
-30		DRY DENSITY,	γd	96.2	96.2	95.8				
3		LB/CU FT		790.2	90.2	97.0				
EN L	VOID RATIO AFTER CONSOLIDATION		e _c							
- 40	TIM	FOR 50 PERCENT		 `						
0 0.1 0.2 0.3 0.4 0.5		ISOLIDATION, MIN	t ₅₀							
HORIZ. DEFORMATION, IN.		WATER CONTENT	Wf	23.0%	23.4%	24:3%	%			
	FINAL			-5.0	25• 1	2113				
		VOID RATIO	ef							
SHEAR STRENGTH PARAMETERS	-	CATIBATION	6	~	0/	···	~			
ø' = 34 •		SATURATION	Sr	%	%	%	%			
φ' = <u>3</u>	NORMAL STRESS, T/SQ FT		σ	1 7 0	20	2 0				
tan o' = 0.674	\vdash			T.0	2.0	3.0				
		CIMUM SHEAR ESS, T/SQ FT	max	0.67	1.39	2.15				
c' =	ACT	UAL TIME TO			7.000	2000				
	FAII	URE, MIN	tf	, 1560	1680	1380				
	RAT	E OF STRAIN, IN./MIN		.00019	.00019	.00019				
CONTROLLED STRESS				.0002		10001				
X CONTROLLED STRAIN		MATE SHEAR ESS, T/SQ PT	Fult							
TYPE OF SPECIMEN TINDESTURBED			2 00	N. SQUARE	0.600	IN. THICK				
TYPE OF SPECIMEN UNDISTURBED		3.00		0.620						
CLASSIFICATION SILTY SAND(SM), gra	ay;	shells approx.	1/1	.6" diam						
	_					G				
LL _ PL _		PI _		<u> </u>		G, 2.6	7			
REMARKSPROJECT LK.PONT.LA.&VIC-HURR. PROT-ORLEANS										
								PARISH OUTFALL CANALS-ORLEANS ST. CANAL		
AREA										
BORING NO. 1-UOP SAMPLE NO. 10-C										
DEPTH 26 1/ 22 6 DATE 1 COTT 1072										
Dali										
DIRECT SHEAR TEST REPORT										

											
4		4									
E 05/1											
	8										
		_									
2	5	2									
5	SIRENGIH,										
	A A			9							
2	SHEAK										
φ		0			<u> </u>	++1++++	++1+++1+1	 			
m			NORMAL STRESS, σ , T/SQ FT $Sqt.8 = 124.5$								
-20			o.		J.	-2	3 -	Avg.			
×	H	Tw	ATER CONTENT	w.	24.8 %	25.1 %		25.0%			
-40 3		\vdash			24.0 %	Z).1 //	2).1 //	25.0%			
VERTICAL DEFORMATION, IN. <i>x</i> 10	AE Z	<u> </u> _ "	OID RATIO	e _o	0.703	0.713	0.711				
	=	S	TURATION	S _o	95.2 %	95.0 %	95.3 %	%			
			Y DENSITY, /CU FT	γa	99.0	98.4	98.5				
-80		VOID RATIO AFTER CONSOLIDATION		e _c		·					
0 01 02 03 04 05 1114			OR 50 PERCENT OLIDATION, MIN	t ₅₀	23.3	23.6	21.9				
HORIZ. DEFORMATION, IN.		w	ATER CONTENT	w _f	%	%	%	%			
			OID RATIO	e _f							
SHEAR STRENGTH PARAMETERS $\phi' = 32^{\circ}$		S/	TURATION	St	%	%	%	%			
		ORM.	AL STRESS,	σ	2.0	4.0	6.0				
c' =			UM SHEAR , T/SQ FT	$ au_{\max}$	1.40	2.49	3.74				
			L TIME TO	· t _t	660	1800	1500				
			F STRAIN, IN./MIN		.00018	.00018	.00018				
X CONTROLLED STRAIN			TE SHEAR , T/SQ FT	τ _{ult}							
TYPE OF SPECIMEN UNDISTURBED	11.00, 1702 17			3.01	3.01 IN. SQUARE		IN. THICK				
TYPE OF SPECIMEN UNDISTURBED 3.01 IN SQUARE 0.620 IN THICK CLASSIFICATION SILTY SAND(SM), tannish gray											
LL _ PL _		P			1		G. 2	•70			
PROÆCT LK.PONT.LA.&VIC-HURR. PROT-ORLEANS											
PARISH OUTFALL CANALS-ORIEANS ST. CANAL							-				
PARISH OUTFALL CANALS-URLEANS ST. CANAL											
		BORING NO. 1-UOP SAMPLE NO. 17-C									
	DEPTH 6) 6/61 8 DATE 5 Sept 1073										
	RCH DIRECT SHEAR TEST REPORT										
		1	ion .	DIRE	T SHEAR 1	EST REPO	KT				

ENG FORM NO. 2089 PREVIOUS EDITION IS DESOLETE

TRANSLUCENT

REV HIME 1970 2009

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

0.59 1/4 O° 1.0 8.0 10.0 2.0 6.0 NORMAL STRESS, &. T/SQ F1 850t = 111 1.50 SPECIMEN NO. AV9 43.92 43.97 44.2 WATER CONTENT. % DRY DENSITY 75.74 76.88 76.91 LB/ CU FT 98.49 99.60 99.78 SATURATION, % F1.00 1.223 1.190 1.189 VOID RATIO WATER CONTENT, % DRY DENSITY LB.'CU FT SATURATION, 3 VOID RATIO PINAL BACK PRESSURE, T/SQ FT 8.1 0.25 STRESS, T/SQ FT MAXIMUM DEVIATOR 1.194 1.316 1.055 STRESS, T/SQ FT tf 2.89 7.11 6.29 ULTIMATE DEVIATOR (0, -0) STRESS, T'SO FT 1.4 1.4 1.4 AXIAL STRAIN, 4, % INITIAL DIAMETER, IN. INITIAL HEIGHT, IN 3.0 CONTROLLED-STRAIN St (Gr) CH3: lns & lys ML; spks dw; org strks. DESCRIPTION OF SPECIMENS G. 2.6977 TYPE OF SPECIMEN 5" Undia TYPE OF TEST LL 65 و1 ام PROJECT Lk. Pont. La. & Vic.-Orleans Parish REMARKS: Lakefront Levees - West of IHNC 5-VI.O SAMPLE NO. 25-C 97.1 / -84.7 DEPTH/ELEV ABORATORY DATE 12 June 73 TRIAXIAL COMPRESSION TEST REPORT

ENG FORM NO. 2089 PREVIOUS EDITION IS DESOLETE

TRANSLUCENT

TRANSLUCENT

(EM 1110-2-1906)

PREVIOUS EDITION IS OBSOLETE

TRANSLUCENT

.01 0.1

1.0

0 ~ 4 8 9 -

∞

0.1

1.0

1.0

REV JUNE 1970 2089

PREVIOUS EDITION IS OBSOLETE

ENG FORM NO. 2089

PREVIOUS EDITION IS OBSOLETE

SHEET 1 OF 11

SHEET 1 OF 9

ENG FORM NO. REV JUNE 1970 2089

ENG FORM NO. 2089

ENG FORM NO. 2089 PREVIOUS EDITION IS OBSOLETE

ENG FORM NO. REV JUNE 1970 2089

ENG FORM NO. 2089 PREVIOUS EDITION IS OBSOLETE

ENG FORM NO. 2089

ENG FORM NO. 2089 PREVIOUS ED

ENG FORM NO. 2089

SHEET 1 OF 9

SHEET 1 OF 9

SHEET 1 OF 12

SHEET 1 OF 11

SHEET 1 OF 13

Suchz

SHEET 1 OF 8

SHEET 1 OF 7

SHEET 1 OF 8

SHEET 1 OF 8

SHEET 1 OF 8

SHEET 1 OF 8

AE/COE PIEZOMETER READINGS

A-E PIEZOMETERS

ORLEANS AVE OUTFALL CANAL

	·					OUTHI	r CHN	HL		
			Piezon	neters	ELN		,		S, EL. N	
	Date	P-1	P-2	P-3	P-4	P-5	P-6	West End @8:60 AM	Robbing. Les	Harrison Are
	9/27/85	-8.4	-8,2	-7.7	2.2	211	-0.6	1.81	_	
	9/30/85	-7,3	-7.2	-6.9	2.4	1,9	0.0	2.78		
·	10/01/85	-6.8	-6.6	-6.0	2.5	2.1	0,3	2.68		_
	10/30/85	-4.8	-4.6	-4.3	4.7	3.9	2.0	5,42		
	4/23/86	-8.9	-8.7	-8.2	0.8	1,2	-6.3	-	0.91	0.95
	5/07/86	-8.9	-8.8	-8.3	1.3	0.9			1.9	1.9
	5/26/86	-9.1	-9.1	-8.7	1.2	0.8			1.2	1.3
	6/02/86	-9.3	-8.6	-8.7	1.3	1.0	8		1.7	1.75
	6/25/86	-8,5	-8,3	-7.8	1,3	1.0	-,7		1.6	1.62
.	7/16/86	-8.9	-8.7	-8.1	0.65	0,3	-1.0		0.98	1.18
	8/06/86	-9.0	-8.8	-8.4	0,5	0.1	-1.4		0.98	0.85
	8/20/86	-8,2	-8.0	-7.4	0.7	0.4	-1.0	- .	0.60	0.60
	9/16/86	-8.7	-8.6	-8.1	1.4	1.1	7		1.7	1.7
	10/23/86	-8.9	-8.8	-8.3	1.8	1.3	6		2,3	2.3
	12/16/86	-8.0	-7.8	-7.3	1.75	1.3	1		1.95	1.8
L							W			
·								<u> </u>		L,
		·							,	
	ļ		ļ	÷						
	·					4.	·			:
L	·	·								
·.										
				,		·				ļ
							·			
<u>i</u>	* Hum	icane	Juan in	fluence	on gage	readings	Oct 18 to	Nov 3rd	1985	
					1 1			2	u	

COE PIEZOMETERS

ORLEANS	BVE	OUTFALL	LANAL
01/6611140	, , , _	0011100	

	_					· · · · · · · · · · · · · · · · · · ·					
Date	1- E	2- E	3-E	4-E	5-E	1-W	2-W	3-W	4-W	5-W	Gage EL-NGVD
 7/2/70	-		-		_	-9.3	-8.8			_	0.5
7/13/70	-8.45	-8.0)		_	-7.5	-84		10. 10. 10. 10.	1	0.4
7/23/70	-7.3	-7.2	1	_			-7.55	_			1.15
9/15/70	-8.1	-8.0		-		-9.4	-8.3	_	,		2.0
9/9/71	-7.3	-7.95	-7.6	-7.8	-6.9	_	-8.2	-8.2	-8.1	-8.7	2.4.

SAMPLE CALCULATIONS

HARR METHOD $S = 18' T = 44 2h_{m} = 13.2$ $S/T = 18'/44' = .41 \underline{I_{eS}} = .60 = \underline{I_{e}(18')} I_{e=.22}$ $I_{e=.22 < .24 (SP)(0k)} h_{m} OVERLAY$ $I_{eL-13.0}$ $I_{eL-13.0}$ $I_{eL-18.8}$			COMPUTATI	ON SHEET	:		
ONDER SELPAGE SIR 2444 16 2446 WEST SIDE! HARR METHOD S= 18' T= 44		•				OUE OVER DV	1
$5 = 18'$ $T = 44$ $2h_{m} = 13.2$ S/T = 18'/44' = .41 $IeS = .60 = Ie(18')$ $Ie = .22I_{e} = .22 < .24 (SP)(OK) h_{m} = .60 = Ie(18') I_{e} = .22I_{e} = .22 < .24 (SP)(OK) I_{e} = .22I_{e} = .22 I_{e} $	" UNDER SEE	PAGE STA	2+44 To_	29+40 WE	ST SIDE	CHECKED BY	· ·
$S/T = 18/44' = .41$ $I_{e}S = .60 = I_{e}(18')$ $I_{e} = .22$ $I_{e} = .22 < .24 (SP)(0K)$ $I_{e} = .22$ $I_{e} $			L - 13 2				
FILL EL 4.5 FILL EL 4.5 CH) TIP EL -18.8							
FILL EL 4.5 EL-10.0 TIP EL-18.8	S/T= 18', Ie= .2	1/44' = .4 <u>1</u> .34 (CH) 22 < .24 (SP)(0	Ies hm	60 = <u>Ie</u>	(18')	Ie=,22	2
FILL EL 4.5 EL-10- OVERLAY TIP EL-18.8							
FILL EL 4.5 EL-1.D.V CH) FILL EL-1.D.V OVERLAY TIP EL-18.8							··
EL -13.0 EL 4.5 ORLEANS AVE OVERLAY TIP EL -18.8	12.2 🗸						
EL -13.0 EL 4.5 ORLEANS AVE OVERLAY TIP EL -18.8		r Iu					• •
EL-1.0-V OVERLAY OVERLAY TIP EL-18.8	_	FILL EL 4.	5		۵		
TIP EL -18.8		A			(EL-16		JE .
TIP EL -18.8	7		EL-1.04][<u>√</u>	OVERLAY	
TIP EL -18.8	*				-	- 4	*
TIP EL -18.8	#		(CH)				
TIP EL-18.8							
TIP EL -18.8	13.5						
7=44	-13.6						
7=44							
7=44	, · · · ·	TIP EL -18.8		.	٠.		:
7=44'	•						
1501				7=44			
(\mathcal{I})		(SP)				
		:					
		, , , , , , , , , , , , , , , , , , ,					
EL -45.0				1			

(CH)

	Vaniti
PROJECT ORLEANS AVE OUTFALL CANAL	PAGE 1 OF 1 COMPUTED BYFJV DATE 5/86
SCHOLLIUNDERSEERAGE STA SOLOD TO 64+00	HARR'S METHOD CHECKED BY DATE
HARR'S METHOD 5=17.0' T=37' Zhm=17.0'	
S/T = 17.0/37'= .46 <u>Ies</u> = .595 =	$\frac{\text{Je}(170')}{8.5}$ $\text{Te} = .30$
ICR = 37.5/62.5 = ,6	
F.S. = $\frac{T_{cR}}{T_{e}} = .6/.3 = 2.0 \ge$	2.0 (CH) (OK)
EL 12.0 <u>V</u>	
·	WS AVE
EL-6.0 ×	ÆL-5,0 ♥

17'	(CH)
TIP EL -22,0	7'
EL-27.0	
EC 27.0	
	(SP)
EL-42.0	
	(CH)

COMP OF A FROM SITE			
PROJECT ORLEANS AVE OUTFALL CANAL	PAGE 1 OF 1	COMPUTED BY FJV	DATE 5/88
SURGECT UNDERSEEPAGE STA 64+00 TO STA 90+	50	CHECKED BY	DATE
HARR METHOD			
S=18.5 T=37' 2hm=17.8			
$5/T = 18.5/37' = .5$ $\frac{\text{TeS}}{\text{hm}} = .59 = \text{Te}$	(18.5) 1	e=.280	•
Ice = 37.5×f/2,5×f = .6	04		
	(5/2) (-1)	•	
F.S. = Ice = 16/28 = 2.1 2 2.0	(OK) (CH)		
EL 11.8 Y			
	. •		
EL-5.0 OR LEANS	AVE EL	-670	
EL -7.5 *	. 74 6.	*	
		••	
5=18.5		(CH)	
771			
JIP EL -24.5 \ 37'			
EL -33.0	- A.		
			• •
	(:	5P)	•
EL -43.0			
	10	_H)	
	(~ · /	
2.		•	
	·		<u> </u>

	PAGE ORLEANS AVE OUTFALL CANAL PAGE 1 OF	2 COMPUTED BY FIV	DATE 5/88
- 1	SUBJECT LATERAL EARTH PRESSURE T-WALLS	CHECKED BY	וואס

STA 22+80 TO STA 23+40 STA 29+40 TO STA 50+00

Sta 50+00 To STA 64+00

At Rest Force = 10,125 + +93.8 = 10,219 =

<u> </u>			
PROJECT ORLEANS AVE	OUTTALL CANAL PAGE ZOE 2	COMPUTED BYFJV	DATE 5/88
SUBJECT LATERAL EARTH	PRESSURE T-WALLS	CHE CKED BY	DATL

STA 64400 TO STA 90+50

At Rest Force = 11,640# +93.8# = 11,734#

OKLEANS AVE OF	UTFALL CANAL	PAGE 1	OF	1	COMPUTED BY	PAT/87
SUBJECT VALVE STRUCT	TURE				CHECKED BY	DATE

LANE'S WEIGHTED CREEP RATIO METHOD Sheetple Cutoff to EL -25.0 (5' into clay)

Maximum Head $\Delta H = 12'$ Headwater +7.0 (Lake) Tailwater -5.0 (Rumping Sta Side)

At Inflow Channel to Outflow Channel

$$D = 5' + 11' + 2(10') + 11' + 5' = 52' \qquad B = \frac{93.5'}{3} = 31.2'$$

$$C_1 R_1 = \frac{52' + 312'}{\Delta H} = \frac{83.2'}{12'} = 6.9 \ge 3.0 \text{ (OK)}$$

At Valve Structure to outflow Channel

$$D = 20' + 11' + 5' = 36'$$
 $B = \frac{58.5}{3}' = 19.5$
 $C_1R_1 = \frac{36' + 19.5'}{12} = 4.6 \ge 3.0$ (OK)

At Valve Structure to Outflow Channel

$$C.R. = \frac{36'}{12} = 3.0 \ge 3.0 \text{ (OK)}$$

EL-11.0				EL -Ilio
* *	EL-14.0	EL - 15.0	EL-14.0	* *
EL-2010		(ML)		
EL-32.0	L EL -25.0	(CH)		L EL -25.0
		(SM)		

PROJECTEANS AVE OUTFALL CANAL	PAGE 1 OF 1	COMPUTED BY	PATE/87
SUBJECT UNDERSELPAGE EAST LEVEE C	LOSURE	CHECKED BY	DATE
HARR METHOD			
T= 32' 5= 16' 2hm = 12'	Headwa	ter +7.0 (L	ake)
-	Tailwate	er - 5.0 (Rum)	ping Station Side
S/T= .5			
IeS = .586= Te(161)	e=,22		
F.S. = $\frac{I_{cR}}{I_e} = \frac{54.5/62.5}{.22} = \frac{1}{10}$	4,0 (ok)	24,0 (Silt	- ML)

PROJECT ORLEANS AVE OUT	TILL CANAL	PAGL 1 OF 2	COMPUTED BY FJV	DATE 7/87
SUBJECT APPROACH WALLS E			CHECKED BY	DATE
	EL 4.5			
	†			
EL 0.0 Y	CONCRETE CAP			
_ 	EL -1.5 1			
	EL -3.5 top of shell			•
	φ=40° 8= 92° c=	D		
m 44 a	-	EL -9.0		
五-11.6	*	•		
(ML)	φ=15° X=119	c = 50062£		
(CH) TIP EL -22.0 _	\$=0° 8=10	2 ^{pcf} c=300 ^{ps+}	f	·

Concrete Cap: $2' \times 4.5' \times 1' = 9f4^3 \times 150 \text{ Pcf} = 1350^{\pm} 1.5' \times 2' \times 1' = 3f4^3 \times 87.5 \text{ Pcf} = 262.5^{\pm} .36 \times 5.5' \times 29.5 \text{ Pcf} \times 2 \times 1730^{\pm} / f+ \times 1 - \times 10 \text{ Negative Skin Friction} \\
\begin{array}{c} \text{ Houndation Analysis + Design''} \end{array}$

Resistance ?

1'x 2 x 9' X 200 Pst + (2)(1) Han 15° (4.5')(54.5 Pct)(9')(.5) + 2'(1')(300 Pst)(2)

= 5391 $\frac{4}{4}$ F.S. = $\frac{5391 + 4}{1730 + 4}$ = 3.1 $\frac{2}{3.0}$ (C)K

CONCRETE CAP :
$$2' \times 4.5' \times 1' \times 150^{\text{pcf}} = 1350^{\text{#}}$$
 $2' \times 1.5' \times 1' \times 87.5^{\text{pcf}} = \frac{762.5^{\text{#}}}{1613^{\text{#}}}$
PILE CAPACITY: $2' \times 1' \times 9' \times 200 \text{ Psf} + 2(1') + 10.15^{\circ}(4.5')(54.5^{\text{pcf}})(9')(.5) + 2' \times 300^{\text{psf}} \times 2 \times 1' = 5391^{\text{#}}$

F.S. =
$$\frac{5.91^{+}}{1613^{+}} = 3.3 \ge 3.0$$
 (OK)
 $3 \times 1613^{+} = 4839^{+}$ $\frac{1613^{+}}{1613^{+}} = 3.3 \ge 3.0$ (OK)
 $4 \approx 39^{+}/2 \times 280^{+} = D$
 $D = 8.6$ $-1.5 - 8.6 = -10.1$ $5 = 4 \times 10.0$

Procedule 1	EAST CLOSURE	LEVEE-VALVE STRUCT	PAGL OF	COMPUTED BYFJV	DATE 2/87
SCHOLCT.	SETTLEMENT	EAST CLOSURE L	EVEE	CHECKED BY	DATI

Maximum settlement of East Closure Levee is .64' from Vertical Stress Induction and Settlement Analysis Program. Settlements based only on consolidation of clay layers (neglected silt and sand layers) Used 1 foot overbuild.

For clay layer EL -20 to EL -32 Used Bor 4-0UG Sample 4-C clay layer EL -41 to EL -53 used Bor 4-0UG Sample 11-B clay layer EL -53 to EL -60 used Bor 4-0UG " "

USED 3-D LOAD Analysis* to Determine settlement where East closure level ties into structure. Used above soils input data. Subdivided East Closure Level into three rectangular loads.

* VERTICAL STRESS INDUCTION AND SETTLEMENT ANALYSIS PROGRAM

STRATA NUM.	MID-DEPTH (FEET)	DEL SIG			SE (TIM 0.278						17.280	34.560
23 4 5	17.0 780.3 0 27.5 654.3 0 38.0 562.5 0	0.036 0.317 0.018 0.168 0.099	0.012 0.095 0.008 0.050 0.052	0.018 0.141 0.011 0.075 0.071	0.024 0.193 0.015 0.102 0.090	0.031 0.260 0.018 0.139 0.099	0.036 0.309 0.018 0.165 0.099	0.036 0.317 0.018 0.168 0.099	0.036 0.036 0.317 0.317 0.018 0.018 0.168 0.168 0.099 0.099		0.036 0.317 0.018 0.168 0.099	
	TO	TALS:	0.638	9.217	0.316	0.424	0.547	0.627	0.638	0.638	0.638	0.638
POSITION: X+ 20.0												
STRATA	MID-DEPTH (FEET)	DEL SIG #/SG FT	LLT.	0.135	SE (TIM 0.270	TTLEMEN E PERIO 0.540	T OF ST D SPECI 1.080	RATUM I FIED IN 2.160	YEARS) 4.320	8.640	17.280	34.560
1 2 3 4 5	5.5 17.0 27.5 38.0 47.5	446.2 495.7 490.3 463.8 435.3	0.019 0.166 0.015 0.134 0.086	0.007 0.050 0.006 0.040 0.046	0.009 0.073 0.009 0.059 0.063			0.019 0.163 0.015 0.130 0.086		0.019 0.166 0.015 0.134 0.086	0.166 0.015 0.134	0.019 0.166 0.015 0.134 0.086
PAUSE:	TO # # # COPY D	TALS: ATA AND C					0.362	0.413	0.420	0.420	0.420	0.420

PAUSE: # # COPY DATA AND CL ENTER GO' TO RESUME EXECUTION GO

X= 32.6 STRATA MID-DEPTH DEL SIG SETTLEMENT OF STRATUM IN FEET (TIME PERIOD SPECIFIED IN YEARS) NUM. (FEET) \$/SQ FT ULT. 0.135 0.270 0.540 1.080 2.160 4.320 8.640 17.280 34.560 5.5 17.0 27.5 38.0 28.5
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 135.0 159.0 0.037 0.012 0.016 0.022 0.030 0.037 0.037 0.037 0.037 0.037 0.036 0.019 0.026 0.032 0.036 0.036 0.036 0.036 0.036 0.036 170.7 TOTALS: 0.118 0.046 0.061 0.081 0.102 0.117 0.118 0.118 0.118 0.118 POSITION: X= 26.7 Y= 8.7 STRATA MID-DEPTH DEL SIG SETTLEMENT OF STRATUM IN FEET (TIME PERIOD SPECIFIED IN YEARS) NUM. (FEET) \$/50 FT ULT. 0.135 0.270 0.540 1.080 2.160 4.320 8.640 17.280 34.560 5.5 0.014 0.005 0.007 0.009 0.012 0.014 0.014 0.014 0.014 0.014 17.0 248.5 0.096 0.028 0.042 0.059 0.078 0.093 0.096 0.096 0.096 0.096 27.5 38.0 260.1 0.003 6.005 0.007 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.065 0.020 0.028 0.038 0.053 0.062 0.065 0.065 0.065 0.065 0.065 0.052 0.052 0.028 0.038 0.048 0.052 0.052 0.052 0.052 0.052 0.052 261.8 254.9 47.5 TOTALS: 9.236 9.884 9.129 9.161 9.293 9.236 9.236 9.236 9.236 9.236 PAUSE: * * * COPY DATA AND CLEAR SCREEN * * * ENTER 'GO' TO RESUME EXECUTION

POSITION:

LAKE PONTCHARTRAIN, LOUISIANA AND VICINITY
HIGH LEVEL PLAN
DESIGN MEMORANDUM NO.19, GENERAL DESIGN
ORLEANS AVENUE OUTFALL CANAL

APPENDIX C
DETAIL COST ESTIMATES

LAKE PONTCHARTRAIN ORLEANS OUTFALL CANAL PHASE I & PHASE II (NOTED BY AN *)

Item	Description	Amount
1	HARRISON AVE. TIE-IN STA. 36+14.85 TO STA. 37+14.85	\$32,483
2	FILMORE AVE. TIE-IN STA. 63+77.7 TO STA. 64+51.7	\$26,982
3	ROBERT E LEE TIE-IN STA. 90+22.25 TO STA. 91+21.25	\$54,307
4	REACH W-6 I-WALL STA. 91+15.16 TO STA. 91+82	\$30,354
5	REACH W-6 I-WALL STA. 91+82 TO STA. 118+87	\$715,360
ద	REACH W-7 I-WALL STA. 118+87 TO STA. 124+87	\$215,751
7	REACH E-6 I WALL STA. 91+21.25 TO STA. 91+84.58	\$5Ø,275
8	REACH E-6 I-WALL STA. 91+84.58 TO STA. 118+67	\$963,748
9	REACH E-7 I-WALL STA. 118+67 TO STA. 124+67	\$242,822
10	REACH E-7 I-WALL STA. 124+67 TO STA. 128+67	\$173,743
11	* REACH E-1 I-WALL STA. 2+42 TO STA. 3+65	\$49,869
12	* REACH E-1 I-WALL STA. 3+65 TO STA. 36+14.85	\$883,829
13	* REACH E-2 I-WALL 37+14.85 TO 44+04 & 44+74 TO 50+00	\$425,546
14	* REACH E-3 I-WALL STA. 50+00 TO STA. 63+77.7	\$557,711
15	* REACH E-4 I-WALL STA. 64+51.7 TO STA. 90+22.25	\$1,306,412
16	* REACH W-1 I-WALL STA. 2+40 TO STA. 3+62	\$112,317
17	* REACH W-1 I-WALL STA. 3+62 TO 22+80 & 23+40 TO 29+40	\$1,795,254
18	* REACH E-2 T-WALL STA. 44+04 TO STA. 44+74	\$64,119
19	*REACH W-1 T-WALL STA.22+80 TO STA. 23+40	\$107,785
20	* R W-2 T-WALL STA 29+40 - 36+28.35 & 37+00.35 - 50+00	\$4,147,959
21	* REACH W-4 T-WALL STA. 50+00 TO SAT. 63+76.76	\$2,187,785
22	* REACH W-5 T-WALL STA. 64+54.7 TO SAT. 90+14.66	\$5,404,370
23	PUMPING STATION T-WALL TIE-IN	\$100,709
24	MOB & DEMOB	\$60,000
25	ENVIROMENTAL PROTECTION	\$20,000
	OCT. '88 COST SUBTOTAL	\$19,729,488

- Curation and Control of the Contro	LAKE PONTCHARTRAIN ORLEANS OUTFALL CANAL PHASE I & PHASE II (NOTED BY AN *)	
Item	Description	Amount
	SUBTOTAL	\$19,729,488
26	PUMPING STATION MODIFICATION	\$170,530
27	PUMPING STATION COFFERDAM	\$258,5 0 0
28	HARRISON AVE. BRIDGE	\$385,073
29	FILMORE AVE. BRIDGE	\$436, 0 9 0
30	ROBERT E LEE BRIDGE	\$ 531,874
31	UTILITY RELOCATIONS :	
	a) 30"DIA. WATERLINE AT STA. 44+50 ; \$5000/SIDE	\$10,000
	b) O.H. POWERLINES AT STA. 4+50,37+20,50+50 ; \$3450 EA.	\$10,350
	SUBTOTAL 25% CONTINGENCIES	\$21,531,904 \$5,368,096
	TOTAL CONSTRUCTION (R)	\$26,900,000
	ENGINEERING & DESIGN 12%	\$3,200,000
	SUPERVISION & ADMIN. 10%	\$3,000,000

TOTAL COST

OCT. '88 COST

\$33,100,000

,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COST ESTIMATE L	AKE PONTCH	ARTRA:	IN ORLEANS OU	JTFALL CANAL
Item	Description :	Quantity	Unit	Unit Price	Amount
1	PHASE I HARRISON AVE. BRIDGE TIE-IN STA. 36+14.85 TO 37+14.85				
1.	PZ-22 STEEL SHEET FILE	602.0	SF	12.00	\$7,224
2	PZ-27 STEEL SHEET PILE	234.0	SF	12.50	\$2,925
3	REIN. CONC. CAP	27.0	CY	350.00	\$9,450
4	EARTH WORK:				
	a) EXCAVATION	102.0	CY	1.00	\$102
	b) BACKFILL (SEMICOMPACT)	67.0	CY	5.50	\$369
	c) FILL (SEMICOMPACTED)	119.0	CY	4,50	\$536
5	ROAD WORK:				
	a) FULLY COMPACTED SOIL	23.0	CY	6.00	\$138
	b) SUBBASE	17.0	CY	14,00	* \$ 238
	c) REINF. CONC. SLAB	11.0	CY	200.00	\$2,200
ద	TEMPORARY STOCKPILE	122.0	CY	4.00	\$488
7	REQUIRED BORROW	24.0	CY	10.50	\$252
8	3-BULB WATERSTOP	6.0	L.F	10.00	\$60
9	L-TYPE WATYERSTOP	14.0	LF	30.00	\$420
10	JOINT MATERIAL	11.0	ŚF	2.00	\$22
	SUBTOTAL				\$24,423
	WEST SIDE = .33*EAST				\$8,060
					-
***************************************			<u> </u>		
				TOTAL	\$32,483

(Mar er er 	COST ESTIMATE	LAKE PONTCH	RTRA	IN ORLEANS OU	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
2	PHASE I FILMORE AVE. BRIDGE TIE-IN STA. 63+77.7 TO 64+51.7				
1	PZ-22 STEEL SHEET PILE	225.0	SF	12.00	\$2,700
2	PZ-27 STEEL SHEET PILE	419.0	SF	12.50	\$5,238
3	REIN. CONC. CAP	22.0	CY	350.00	\$7,700
4	EARTH WORK:				
	a) EXCAVATION	138.0	CY	1.00	\$138
	b) BACKFILL (SEMICOMPACT)	75.0	CY	5.50	\$413
	c) OMIT				
5	ROAD WORK:				
	a) FULLY COMPACTED SOIL	25.0	CY	6.00	\$150
	b) SUBBASE	19.0	CY	14.00	\$266
	c) REINF. CONC. SLAB	13.0	CY	200.00	\$2,600
6	TEMPORARY STOCKPILE	166.0	CY	3.50	\$581
7	OMIT				
8	3-BULB WATERSTOP	6.0	LF		\$60
9	L-TYPE WATYERSTOP	14.0	LF	30.00	\$420
10	JOINT MATERIAL	11.0	SF	2.00	\$22
	SUBTOTAL				\$20,287
	WEST SIDE = Ø.33*EAST				\$6,695
		,	-		
14 111121111111111111111111 1	J	4	<u> </u>	TOTAL	\$26,982

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS OF	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
3	PHASE I ROBERT E LEE AVE. BRIDGE TIE-IN STA, 90+22.25 TO 91+21.25				
1	PZ-22 STEEL SHEET PILE	1,624.0	SF	12.00	\$19,488
2	REIN. CONC. CAP	42.0	CY	350.00	\$14,700
3	EARTH WORK:				
	a) EXCAVATION	278.0	CY	1,00	\$278
	b) BACKFILL (SEMICOMPACT)	81.0	CY	5.50	\$446
	c) FILL (SEMICOMPACTED)	64.0	CY	4 , 50	\$288
4	ROAD WORK:				÷
	a) FULL COMPACTION	39.0	CY	6.00	\$234
	b) SUBBASE (CRUS. STONE)	30.0	· CY	14.00	\$420
	c) REINF. CONC. SLAB	19.0	CY	200.00	\$3,800
5	TEMPORARY STOCKPILE	128.0	CY	3.25	\$416
6	REQUIRED BORROW	22.0	CY	10.50	\$23:
7	3-BULB WATERSTOP	6.0	LF	10.20	\$60 \$60
8	L-TYPE WATYERSTOP	15.0	LF	30.00	\$450
9	JOINT MATERIAL	11.0	SF	2.00	\$2:
	SUBTOTAL			* ***	\$40,83
	WEST SIDE =0.33*EAST				\$13,47
					,
		1.			
√. ³		•			
-					
				TOTAL	\$54,307

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS O	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Frice	Amount
4	PHASE I I-WALL REACH W-6 STA. 91+15.16 TO 91+82				
1	PZ-22 STEEL SHEET PILE	390.0	SF	12.00	\$4,680
2	PZ-27 STEEL SHEET PILE	810.0	SF	12.50	\$10,125
3	REIN. CONC. CAP	32.0	CY	350.00	\$11,200
4	EARTH WORK:				
	a) EXCAVATION	35.0	CY	1.00	\$35
	b) BACKFILL (SEMICOMPACT)	52.0	CY	5.50	\$286 \$286
	c) FILL (SEMICOMPACTED)	157.0	CY	4.50	\$7 0 7
5	TEMPORARY STOCKPILE	42.0	CY	3.00	\$12 6
ద	REQUIRED BORROW	258.0	CY	10.50	\$2,709
7	3-BULB WATERSTOP	13.0	L.F	1.0.00	\$130
8	L-TYPE WATYERSTOP	9.0	LF!	. 30.00	\$270
9	JOINT MATERIAL	18.0	SF	2.00	\$36
10	FERT & SEED	.1	AC	500.00	\$5Ø
				·	
	,		ļ		
					•
!					,
					, -
				• .	
		6	<u>.</u> .	TOTAL	\$30,354

	COST ESTIMATE	AKE PONTCH	ARTRA:	IN ORLEANS O	JTFALL CANAL
[tem	Description	Quantity	Unit	Unit Price	Amount
5	PHASE I I-WALL REACH W-6 STA. 91+82 TO 118+87			one contribution on little in call 112	
i	PZ-22 STEEL SHEET PILE	25,688.0	SF	12.00	\$3 0 8,258
2	REIN. CONC. CAP	1,090.0	CY	350.00	\$381,500
3	EARTH WORK:				
	a) EXCAVATION	1,696.0	CY	1.00	\$1,690
	b) BACKFILL (SEMICOMPACT)	1,345.0	CY	5.50	\$7,398
	c) OMIT				
4	TEMPORARY STOCKPILE	2,035.0	CY	3.00	\$6,10
5	REQUIRED BORROW	187.0	CY	10.50	\$1,96
6	3-BULB WATERSTOP	639.0	LF	10.00	\$6,39
7	JOINT MATERIAL	851.0	SF	2.00	\$1,70
8	FERT & SEED	.7	AC	500.00	\$35
			·		
-					

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS OL	JTFALL CANAL
(tem	Description	Quantity	Unit	Unit Price	Amount
6	PHASE I I-WALL REACH W-7 STA. 118+87 TO 124+87	·			
1	PZ-22 STEEL SHEET PILE	8,540.0	SF	12.00	\$102,480
2	REIN. CONC. CAP	309.0	CY	350.00	\$108,150
3	EARTH WORK:				
	a) EXCAVATION	376.0	CY	1.00	\$37
	b) BACKFILL (SEMICOMPACT)	298.0	CY	5.50	\$1,63
	c) OMIT				
4.	TEMPORARY STOCKPILE	451.0	CY	.75	\$33(
5	REQUIRED BORROW	40.0	CY	10.50	\$420
ద	3-BULB WATERSTOP	176.0	LF	10.00	\$1,76
7	JOINT MATERIAL	244.0	SF	2.00	\$48
8	FERT & SEED	.2	AC	500.00	\$1.00

	COST ESTIMATE	AKE PONTCH	ARTRA:	IN ORLEANS O	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
: 7	PHASE I I-WALL REACH E-6 STA. 91+21.25 TO 91+84.58				
<u>1</u>	PZ-22 STEEL SHEET PILE	1,534.0	SF	12.00	\$18,40
2	REIN. CONC. CAP	57.0	CY	350.00	\$19,95
3	EARTH WORK:				
	a) EXCAVATION	107.0	CY.	1.00	\$100
	b) BACKFILL (SEMICOMPACT)	129.0	CY	5,50	\$710
	c) FILL (SEMICOMPACTED)	427.0	CY	4.50	\$1,92
4	TEMPORARY STOCKPILE	128.0	CY	3.25	\$410
5	REQUIRED BORROW	778.0	CY	10.50	\$8,16
6	3-BULB WATERSTOP	28.0	L.F	10.00	\$280
7	L-TYPE WATYERSTOP	6.0	L.F	30.00	\$180
8	JOINT MATERIAL	42.0	SF	2.00	\$8
9	FERT & SEED	.1	AC	500.00	\$5(
	A the state of the	9		TOTAL	\$50,27

2 REIN. CONC. CAP 1,082.0 CY 350.00 \$37 3 EARTH WORK: a) EXCAVATION b) BACKFILL (SEMICOMPACT) c) OMIT 4 TEMPORARY STOCKPILE 5 REQUIRED BORROW 219.0 CY 350.00 \$37 4 350.00 \$37 6 3-BULB WATERSTOP 1,082.0 CY 1.00 \$37 4 1.00 \$37 5 REQUIRED BORROW 219.0 CY 10.50 \$37 4 300 \$37 6 3-BULB WATERSTOP 639.0 LF 10.00 \$37	int 59,500 78,700 51,641 57,387 52,300 54,390
### REACH E-6 STA. 91+84.58 TO 118+67 1 PZ-22 STEEL SHEET PILE	78,700 \$1,661 \$7,387 \$5,979 \$2,300 \$6,390
2 REIN. CONC. CAP 1,082.0 CY 350.00 \$37 3 EARTH WORK: a) EXCAVATION b) BACKFILL (SEMICOMPACT) c) OMIT 4 TEMPORARY STOCKPILE 5 REQUIRED BORROW 219.0 CY 10.50 \$ 4 3-BULB WATERSTOP 439.0 LF 10.00	78,700 \$1,661 \$7,387 \$5,979 \$2,300 \$6,390
3 EARTH WORK: a) EXCAVATION b) BACKFILL (SEMICOMPACT) c) OMIT 4 TEMPORARY STOCKPILE 5 REQUIRED BORROW 6 3-BULB WATERSTOP 6 39.0 LF 1,000 9	\$1,661 \$7,387 \$5,979 \$2,300 \$6,390
a) EXCAVATION 1,661.0 CY 1.00 9 b) BACKFILL (SEMICOMPACT) 1,343.0 CY 5.50 9 c) OMIT 1,993.0 CY 3.00 9 5 REQUIRED BORROW 219.0 CY 10.50 9 6 3-BULB WATERSTOP 639.0 LF 10.00 9	\$7,387 \$5,979 \$2,300 \$6,390
b) BACKFILL (SEMICOMPACT) 1,343.0 CY 5.50 4 c) OMIT 4 TEMPORARY STOCKPILE 1,993.0 CY 3.00 4 5 REQUIRED BORROW 219.0 CY 10.50 4 6 3-BULB WATERSTOP 639.0 LF 10.00 4	\$7,387 \$5,979 \$2,300 \$6,390
C) OMIT 4 TEMPORARY STOCKPILE 1,993.0 CY 3.00 4 5 REQUIRED BORROW 219.0 CY 10.50 4 6 3-BULB WATERSTOP 639.0 LF 10.00	5,979 2,300 66,390
4 TEMPORARY STOCKPILE 1,993.0 CY 3.00 4 5 REQUIRED BORROW 219.0 CY 10.50 4 6 3-BULB WATERSTOP 639.0 LF 10.00 4	02,300 04,390
5 REQUIRED BORROW 219.0 CY 10.50 \$ 6 3-BULB WATERSTOP 639.0 LF 10.00 \$	02,300 04,390
6 3-BULB WATERSTOP 639.0 LF 10.00 4	6,390
7 JOINT MATERIAL 916.0 SF 2.00	1,832

	COST ESTIMATE	AKE PONTCH	ARTRA:	IN ORLEANS OL	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
1 9	PHASE I I-WALL REACH E-7 STA. 118+67 TO 124+67				
1	PZ-22 STEEL SHEET PILE	11,400.0	SF	12.00	\$136,800
2	REIN. CONC. CAP	286.0	CY	350.00	\$100,100
. 3	EARTH WORK:				
	a) EXCAVATION	376.0	CY	1.00	\$378
	b) BACKFILL (SEMICOMPACT)	300.0	CY	5.50	\$1,650
	c) FILL (SEMICOMPACTED)		CY.		,
4	TEMPORARY STOCKPILE	451.0	CY	2.75	\$1,240
5	REQUIRED BORROW	44.0	CY	10.50	\$462
6	3-BULB WATERSTOP	171.0	LF	10.00	\$1,716
7	JOINT MATERIAL	242.0	SF	2.00	\$48
٠.			٠.		
				TOTAL	\$242,82

	COST ESTIMATE L	IN ORLEANS OL	JTFALL CANAL		
tem	Description	Quantity	Unit	Unit Price	Amount
10	PHASE I I-WALL REACH E-7 STA. 124+67 TO 128+67				
1	PZ-22 STEEL SHEET PILE	8,000.0	SF	12.00	\$96,000
2	REIN. CONC. CAP	210.0	CY	350.00	\$73,500
3	EARTH WORK:				'
	a) EXCAVATION	251.0	CY	1.00	\$251
	b) BACKFILL (SEMICOMPACT)	199.0	CY	5.50	\$1,095
	c) OMIT				
4	TEMPORARY STOCKPILE	301.0	CY	2.75	\$828
5	REQUIRED BORROW	28.0	CY	10.50	\$294
દ	3-BULB WATERSTOP	126.0	LF	10.00	\$1,260
7	JOINT MATERIAL	183.0	SF	2.00	\$366
8	FER & SEED	.3	AC	500.00	\$150
			·.		
			٠.		

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS O	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
1/	PHASE II I-WALL REACH E-1 STA. 2+42 TO 3+65				
1	PZ-22 STEEL SHEET PILE	1,230.0	SF	12.00	\$14,760
2	REIN. CONC. CAP	50.0	CY	350.00	\$17,500
3	EARTH WORK:				·
	a) EXCAVATION	77.0	CY	1.00	\$77
	b) BACKFILL (SEMICOMPACT)	61.0	CY	5.50	\$336
	c) OMIT				
4	TEMPORARY STOCKPILE	92.0	CY	3.75	\$345
5	REQUIRED BORROW	10.0	CY	10.50	\$105
ద	3-BULB WATERSTOP	27.0	LF	10.00	\$270
7	JOINT MATERIAL	38.0	SF	2.00	\$76
8	SHEET PILE SPLICES	82.0	EA	200.00	\$16,400
	The state of the s				
			,		
i					
				TOTAL	\$49,869

	COST ESTIMATE L		r		JTFALL CANAL
tem	Description	Quantity	Unit	Unit Price	Amount
12	PHASE II I-WALL REACH E-1 STA. 3+65 TO 36+14.85				
.1.	PZ-22 STEEL SHEET PILE	32,500.0	SF	12.00	\$390,00
2	REIN. CONC. CAP	1,327.0	CY	350.00	\$464,45
3	EARTH WORK:				
	a) EXCAVATION	2,040.0	CY	1.00	\$2,04
	b) BACKFILL (SEMICOMPACT)	1,627.0	CY	5.50	\$8,94
	c) OMIT	: 			
4	TEMPORARY STOCKPILE	2,440.0	CY	3.50	\$8,54
5	OMIT				
6	3-BULB WATERSTOP	737.0	LF	10.00	\$7,37
77	JOINT MATERIAL	1,040.0	SF	2.00	\$2,08
8	FERT & SEED	. 8	AC	500.00	\$40
	*				•
				,	
			· .		
			,		

PHASE II I-WALL REACH E-2 STA. 36+14.85 TO 44+04 STA. 44+74 TO 50+00 1 PZ-22 STEEL SHEET PILE		COST ESTIMATE	LAKE PONTCH	ARTRA	IN ORLEANS OL	TFALL CANAL
REACH E-2 STA. 36+14.85 TO 44+04 STA. 44+74 TO 50+00 1 PZ-22 STEEL SHEET PILE	Item	Description.	Quantity	Unit	Unit Price	Amount
2 REIN. CONC. CAP 652.0 CY 350.00 \$228,20 3 EARTH WORK: a) EXCAVATION 2,815.0 CY 1.00 \$2,81 b) BACKFILL (SEMICOMPACT) 1,600.0 CY 5.50 \$8,80 c) FILL (SEMICOMPACTED) 4,238.0 CY 4.50 \$19,07 4 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04	1.3	REACH E-2 STA. 36+14.85 TO 44+04				
3 EARTH WORK: a) EXCAVATION 2,815.0 CY 1.00 \$2,81 b) BACKFILL (SEMICOMPACT) 1,600.0 CY 5.50 \$8,80 c) FILL (SEMICOMPACTED) 4,238.0 CY 4.50 \$19,07 4 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04	1	PZ-22 STEEL SHEET PILE	8,825.0	SF	12.00	\$105,90
a) EXCAVATION 2,815.0 CY 1.00 \$2,81 b) BACKFILL (SEMICOMPACT) 1,600.0 CY 5.50 \$8,80 c) FILL (SEMICOMPACTED) 4,238.0 CY 4.50 \$19,07 4 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04	2	REIN. CONC. CAP	652.0	CY	350.00	\$228,20
b) BACKFILL (SEMICOMPACT) 1,600.0 CY 5.50 \$8,80 C) FILL (SEMICOMPACTED) 4,238.0 CY 4.50 \$19,07 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 FEQUIRED BORROW 4,460.0 CY 10.50 \$46,83 G 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 TO JOINT MATERIAL 520.0 SF 2.00 \$1,04	3	EARTH WORK:				
C) FILL (SEMICOMPACTED) 4,238.0 CY 4.50 \$19,07 4 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04		a) EXCAVATION	2,815.0	CY	1.00	\$2,81
4 TEMPORARY STOCKPILE 2,240.0 CY 3.50 \$7,84 5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04		b) BACKFILL (SEMICOMPACT)	1,600.0	CY	5.50	\$8,80
5 REQUIRED BORROW 4,460.0 CY 10.50 \$46,83 6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04		c) FILL (SEMICOMPACTED)	4,238.0	CY	4 50	\$19,07
6 3-BULB WATERSTOP 390.0 LF 10.00 \$3,90 7 JOINT MATERIAL 520.0 SF 2.00 \$1,04	4	TEMPORARY STOCKPILE	2,240.0	CY	3.50	\$7,84
7 JOINT MATERIAL 520.0 SF 2.00 \$1.04	5	REQUIRED BORROW	4,460.0	CY	10.50	\$46,83
	6	3-BULB WATERSTOP	390.0	LF	10.00	\$3,90
8 FERT & SEED 2.3 AC 500.00 \$1,15	7	JOINT MATERIAL	520.0	SF	2.00	\$1,04
	8	FERT & SEED	2.3	AC	500.00	\$1,15

	COST ESTIMATE	AKE PONTCH	ARTRA:	IN ORLEANS OU	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount:
14	PHASE II I-WALL REACH E-3 STA. 50+00 TO 63+77.7				
1	PZ-22 STEEL SHEET PILE	11,989.0	SF	12.00	\$143,868
2	REIN. CONC. CAP	829.0	CY	350.00	\$290,150
3	EARTH WORK:				
	a) EXCAVATION	4,060.0	CY	1.00	\$4,060
}	b) BACKFILL (SEMICOMPACT)	1,840.0	CY	5.50	\$10,120
į	c) FILL (SEMICOMPACTED)	5,890.0	CY	4.50	\$26,505
4.	TEMPORARY STOCKPILE	4,870.0	CY	3,50	\$17,045
5	REQUIRED BORROW	5,590.0	CY	10.50	\$58,695
6	3-BULB WATERSTOP	483.0	LF	10.00	\$4,830
7	JOINT MATERIAL	544.0	SF	2.00	\$1,086
8	FERT & SEED	2.7	AC	500.00	\$1,350
<u></u>		/	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOTAL	\$557,711

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS OF	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
15	PHASE II I-WALL REACH E-4 STA. 64+51.7 TO 90+22.25				
1	PZ-22 STEEL SHEET PILE	42,390.0	SF	12.00	\$5Ø8,68Ø
2	REIN. CONC. CAP	1,914.0	CY	350.00	\$669,900
3	EARTH WORK:				,
	a) EXCAVATION	13,067.0	CY	1.00	\$13,067
	b) BACKFILL (SEMICOMPACT)	4,710.0	CY	5.50	\$25,905
	c) FILL (SEMICOMPACTED)	4,020.0	CY	4.50	\$18,090
4	TEMPORARY STOCKPILE	15,700.0	CY	3.00	\$47,100
5	ECESS MATERAL	840.0	CY	10.50	\$8,820
6	3-BULB WATERSTOP	1,070.0	LF	10.00	\$10,700
7	JOINT MATERIAL	1,450.0	SF	2.00	\$ 2,900
8	DERT & SEED	2,5	AC	500.00	\$1,250
.!					
***************************************				TOTAL	\$1,306,412

***************************************	COST ESTIMATE I	LAKE PONTCH	ARTRA:	IN ORLEANS O	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
16	PHASE II I-WALL REACH W-1 STA. 2+40 TO 3+62				
1.	PZ-27 STEEL SHEET PILE	2,477.0	SF	12.00	\$29,724
2	REIN. CONC. CAP	113.0	CY	350.00	\$39,550
3	EARTH WORK:				
	a) EXCAVATION	237.0	CY	1.00	\$237
	b) BACKFILL (SEMICOMPACT)	254.0	CY	5.50	\$1,397
	c) OMIT				
4	TEMPORARY STOCKPILE	284.0	CY	3.75	\$1,065
5	REQUIRED BORROW	119.0	CY	10.50	\$1,250
6	3-BULB WATERSTOP	28.0	L.F	10.00	\$280
7	JOINT MATERIAL	32.0	SF	2.00	\$64
8	SHEET FILE SPLICE	163.0	EA	200.00	\$32,600
9	REMOVE EXISTING I-WALL	122.0	LF	50.00	. \$6,100
10	FERT & SEED	.1	AC	500.00	\$50
-					
-					
			, .	TOTAL	\$112,317

arred of a process of local cut	COST ESTIMATE L	AKE PONTCH	ARTRA:	IN ORLEANS OU	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
17	PHASE II I-WALL REACH W-1 STA. 3+62 TO 22+80 STA. 23+40 TO 29+40				
1	PZ-27 STEEL SHEET PILE	51,100.0	SF	12.50	\$638,750
2	REIN. CONC. CAP	2,340.0	CY	35 0.0 0	\$819,00
3	EARTH WORK:				
	a) EXCAVATION	4,890.0	CY	1.00	\$4,890
	b) BACKFILL (SEMICOMPACT)	5,240.0	CY,	5,50	\$28,820
	c) OMIT				
4	DMIT				
5	OMIT				
6	3-BULB WATERSTOP	390.0	LF	10.00	\$ 3,90
7	JOINT MATERIAL	520.0	SF	2.00	\$1,04
.8	ROAD WORK:				<i>:</i> •
	a) REMOVE EXISTING RD SURF.	6,156.0	SY	5.00	\$30,78
	b) NEW RD. SURFACE	6,156.0	SY	10.00	\$61,56
	c) SUBBASE	5,422.0	TON	14.00	\$75,90
	d) FILL (UNCOMPACTED)	420.0	CY	1.80	\$75
	e) SEMICOMPACTED SHOULDER	700.0	CY	4.50	\$3,150
9	FERT & SEED	1.6	AC	500.00	\$8 0)
10	I-WALL REMOVAL	2,518.0	LF	50.00	\$125,90

	COST ESTIMATE	ST ESTIMATE LAKE PONTCHARTRAIN ORLEANS OF				
Item	Description	Quantity	Unit	Unit Price	Amount	
18	PHASE II T-WALL REACH E-2 STA. 44+04 TO 44+74					
1	PZ-22 STEEL SHEET PILE	330.0	SF	12.00	\$3,960	
2	REIN. CONC. CAP					
	a) STEM	43.0	CY	400.00	\$17,200	
	b) SLAB	44.0	CY	200.00	 \$8,8 00	
	c) STABLIZATION SLAB	6.0	CY	70.00	率42亿	
3	EARTH WORK:				,	
	a) EXCAVATION	150.0	CY	1.00	\$150	
	b) BACKFILL (SEMICOMPACT)	27.0	CY	5.50	\$149	
	c) OMIT					
4	OMIT					
5	OMIT					
6	3-BULB WATERSTOP	1.070.0	LF	10.00	\$10,700	
7	JOINT MATERIAL	12.0	SF	2.00	\$24	
8	L-TYPE WATERSTOP	18.0	LF	30.00	\$540	
9	12"sq. PRESTRESS CONC. PILE	1,232.0	LF	18.00	\$22,176	
	۲.					
	:					
	·	,				
	:					
		• .				
	And the second s		<u> </u>	l	All the state of t	
		20		TOTAL	\$64,119	

	COST ESTIMATE	AKE PONTCH	ARTRA]	IN ORLEANS OU	ITFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
19	PHASE II T-WALL REACH W-1 STA. 22+80 TO 23+40				
.1.	PZ-22 STEEL SHEET PILE	1,890.0	SF	12.00	\$22,6 80
2	REIN. CONC. CAP (T-WALL)				
	a) STEM	57.0	CY	400.00	\$22,800
	b) SLAB	44.0	CY	200.00	\$8,800
	c) STABLIZATION SLAB	6.0	CY	70.00	\$420
3	EARTH WORK:				
	a) EXCAVATION	378.0	CY	1.00	\$376
	b) BACKFILL (SEMICOMPACT)	84.0	CY	5.50	\$462
4	12"sq. PRESTRESS CONC. PILE	1,860.0	LF	18.00	\$33,480
5	OMIT				
€	COFFERDAM:				
	a) PZ-35 (DRIVE & PULL)	2,340.0	SF	4.00	\$9,360
	b) BACKFILL (SHEET PILE)	270.0	CY	5.50	\$1,48
	c) RESHAPE CHANNEL	270.0	CY	1.00	\$270
7	REMOVE & DISPOSE OF EXISTING I-WALL	60.0	LF	80.00	\$4,800
8	TEMPORARY STOCKPILE	130.0	CY	3.75	\$486
9	EXCESS MATERAL	350.0	CY	3.75	\$1,31
10	DEWATER		LS	1,000.00	\$1,000
11	FERT & SEED	.1	AC	500.00	*56
	And the Company of th	21	J	TOTAL	\$107,78

	COST ESTIMATE L	AKE PONTCH	ARTRA	IN ORLEANS OU	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
20	PHASE II T-WALL REACH W-2 STA. 29+40 TO 36+28.35 STA. 37+00.35 TO 50+00				Company of the second of the s
1	PZ-22 STEEL SHEET PILE	62,622.0	SF	12.00	\$7 51,464
2	REIN. CONC. CAP (T-WALL)				
	a) STEM	1,894.0	ĊΥ	400.00	\$757,6 0 0
	b) SLAB	1,473.0	CY	200.00	\$294,600
	c) STABLIZATION SLAB	196.0	CY	7 0. 20	\$13,720
3	EARTH WORK:				
	a) EXCAVATION	12,500.0	CY	1.00	\$12,500
	b) BACKFILL (SEMICOMPACT)	2,780.0	CY	5.50	\$15,290
4	12"sq. PRESTRESS CONC. PILE	61,600.0	· LF	18.00	\$1,108,800
5	REMOVE & DESPOSE OF EXISTI' REINF. CONC. RETAINING WALL	1,990.0	LF	80.00	\$159,200
6	COFFERDAM:			·	
	a) PZ-35 (DRIVE & PULL)	83,500.0	SF	4, 20	\$334,000
	b) PZ-35 STEEL SHEET PILE	24,200.0	SF	16.50	\$39 9,300
	b) BACKFILL (SHEET PILE)	8,950.0	CY	5.50	\$49,228
	c) RESHAPE CHANNEL	10,740.0	CY	1.00	\$10,740
7	REMOVE & DISPOSE OF EXISTING I-WALL	1,590.0	LF	80.00	\$159,202
8	TEMPORARY STOCKPILE	4,260.0	CY	4.50	\$19,170
9	EXCESS MATERAL	11,700.0	CY	4.50	\$52,650
1. Ø	DEWATER		LS	10,000.00	\$10,000
11	FERT & SEED	1.0	AC	500.00	\$502
			L	TOTAL	\$4,147,959

	COST ESTIMATE L	AKE PONTCHA	ARTRA!	IN ORLEANS OL	ITFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
2/	PHASE II T-WALL REACH W-4 STA. 50+00 TO 63+76.7				
1	PZ-22 STEEL SHEET PILE	23,400.0	SF	12.00	\$28 0 ,80
2	REIN. CONC. CAP (T-WALL)				
	a) STEM	937.0	CY	400.00	\$374,80
	b) SLAB	1,020.0	CY	200.00	\$204,00
	c) STABLIZATION SLAB	136.0	CY	70.00	\$9,52
3	EARTH WORK:		. ′		
	a) EXCAVATION	11,600.0	CY	1.00	\$11,60
	b) BACKFILL (SEMICOMPACT)	2,600.0	CY	5.50	\$14,30
4	12"sq. PRESTRESS CONC. PILE	47,100.0	LF	18.00	\$847,80
5	REMOVE & DESPOSE OF EXISTI REINF. CONC. RETAINING WALL	1,380.0	LF	50.00	\$69,00
6	COFFERDAM:				
	a) PZ-35 (DRIVE & PULL)	37,200.0	SF	4.00	\$148,80
	b) BACKFILL (SHEET PILE)	6,200.0	CY	5.50	\$34,10
	c) RESHAPE CHANNEL	7,440.0	CY	1.00	\$7,44
7	REMOVE & DISPOSE OF EXISTING I-WALL	1,380.0	LF	80.00	\$110,40
8	TEMPORARY STOCKPILE	6,500.0	CY	3.75	\$24,37
9	EXCESS MATERAL	10,800.0	CY	3.75	\$40,50
10	DEWATER		LS	10,000.00	\$10,00
11	FERT & SEED	.7	AC	500.00	\$35
		·			
				TOTAL	\$2,187,78

77.4-11-4	COST ESTIMATE L	AKE PONTCH	ARTRA:	IN ORLEANS OL	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
22	PHASE II T-WALL REACH W-5 STA. 64+54.7 TO 90+14.66	·			
1	PZ-22 STEEL SHEET PILE	45,300.0	SF	12,50	\$566,25 0
2	REIN. CONC. CAP (T-WALL)				
	a) STEM	2,960.0	-CY	400.00	\$1,184,000
	b) SLAB	1,900.0	CY	200.00	\$380,00 0
	c) STABLIZATION SLAB	253.0	CY	70.00	\$17,710
3	EARTH WORK:				
	a) EXCAVATION	21,700.0	CY	1.00	\$21,700
	b) BACKFILL (SEMICOMPACT)	5,120.0	CΥ	5.50	\$28,160
4	12"sq. PRESTRESS CONC. PILE	87,700.0	LF	18.00	\$1,578,600
5	REMOVE & DESPOSE OF EXISTI'REINF. CONC. RETAINING WALL	2,560.0	LF	50.00	\$128,000
6	COFFERDAM:				•
	a) PZ-35 (DRIVE & PULL)	73,000.0	SF	15.00	\$1,095,000
1. July 10 10 10 10 10 10 10 10 10 10 10 10 10	b) BACKFILL (SHEET PILE)	11,500.0	CY	5.50	\$63,250
, pp. parties and the second	c) RESHAPE CHANNEL	13,800.0	CY	1.00	\$13,800
7	REMOVE & DISPOSE OF EXISTING I-WALL	2,560.0	L.F	80.00	\$2 0 4,8 00
8	TEMPORARY STOCKPILE	12,200.0	CY	3.50	\$42,700
9	EXCESS MATERAL	19,900.0	CY	3.50	\$69,650
10	DEWATER		LS	10,000.00	\$10,000
1.1	FERT & SEED	1.5	AC	500.00	\$75Ø
	Lanconcon and the second secon	L. C.	L	TOTAL	\$5,404,370

	COST ESTIMATE	AKE PONTCHA	ARTRA:	IN ORLEANS OU	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
23	PUMPING STATION T-WALL TIE-IN				
1	PZ-22 STEEL SHEET PILE	1,350.0	SF	12.00	\$16,200
2	REINF.CONC.		,		
	a) STEM	77.0	CY	400.00	\$30,80
	b) BASE SLAB	67.0	CY	200.00	\$13,40
	c) STABLIZATION SLAB	9.0	CY	70.00	\$63
3	12"sq PRESTRESS PILE	1,938.0	LF	18.00	\$34,88
4	EXCAVATION	125.0	CY	1.00	\$12
5	RESHAPE LEVEE		LS	3,000.00	\$3,00
ద	3-BULB WATERSTOP	85.0	LF	10.00	\$85
7	L-TYPE WATERSTOP	18.0	LF	30.00	\$54
8	JOINT MATERAL	140.0	SF	2.00	\$28
					Ty Ty
		NHIN		TOTAL	\$100,70

Ž

	COST ESTIMATE L	AKE PONTCH	ARTRA:	IN ORLEANS OL	ITFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
26	PUMPING STATION MODIFICATION				
1	PZ-22 STEEL SHEET PILE	4,425.0	SF	12.00	\$53,100
2	REINF. CONC. CAP	66.0	CY	350.00	\$23,100
3	NEOPRENE SEAL 30" X 1/2"	750.0	LF	4.00	\$3,000
4	CRS ANCHOR BOLT 1/2"DIA.X6"	150.0	EA	2.50	\$375
5	1" X 3" CRS BAR	165.0	LF	3.00	\$495
ద	8"CONC. EXTERIA COVER ON PS				
	a) SANDBLAST EXTEDRIA WALL	2,600.0	SF	2.00	\$5,200
	b) DRILL 1"dia. X 8" HOLE	2,700.0	EA	10.00	\$27,000
	c) EPOXY #3 REBAR	2,700.0	EA	1.00	\$2,700
	d) EPOXY COAT EXTERRIA WALL	2,600.0	SF.	2.00	\$5,200
	e) 8" REINE. CONC. COVER	77.0	CY	60 0. 00	\$45,200
7	AIR COMPERESSOR 1 1/2 H.P.		LS	1,000.00	\$1,000
8	PORTABLE 5 KW GENERATOR		LS	1,700.00	\$1,700
9	AIR STORAGE TANK	4	LS	500,.00	\$500
10	3-BULB WATERSTOP	90.0	LF	10.00	\$920
11	JOINT MATERIAL	30.0	SF	2.00	\$60
					· · · · ·
		· .			
				TOTAL	\$170,53

	COST ESTIMATE	LAKE PONTCH	ARTRA:	IN ORLEANS OL	JTFALL CANAL
Item	Description	Quantity	Unit	Unit Price	Amount
27	PUMPING STATION COFFERDAM			·	
1	PZ-27 STEEL SHEET PILE	9,800.0	SF	12.50	\$122,50
2	HP 14 × 73	2,250.0	LF	24.00	\$54,00
3	W 18 × 76	200.0	LF	35.00	\$7,00
4	DEWATER		L.S	40,000.00	\$40,00
5	REMOVAL OF COFFERDAM		LS	35,000.00	\$35,00
	•				·
			}		
					•
			·.		
					·
		,			
	. :				

	COST ESTIMATE L	IN ORLEANS OU	JTFALL CANAL		
Item	Description	Quantity	Unit	Unit Price	Amount.
28	PHASE I HARRISON AVE. BRIDGE				
1	REMOVE REIN. CONC. DECK	350.0	TONS	300.00	\$105,000
2	REMOVE & SANDBLAST W18X96 PAINT & REPLACE W18X96		LS	15,000.00	\$15,000
3	WELD 7/8"X4" HEADED STUDS	2,660.0	EA	1.25	\$3,325
4	NEW BOLTS & HOLES (A325 1 1/4"DIA X9" W/ANCHORS	140.0	EA	6.50	\$910
5	NON-CONTINUOUS ED L8X8X7/8" (W/2-ANCHOR @ 1'O.C.)	300.0	LF	27.00	\$8,100
6	DECK JOINT L2X2X3/4" (W/ANCHORS @ 1'O.C.)	300.0	LF	12.00	\$3,600
7	REIN. CONC.DECK				·
	a) SLAB	94.0	CY	200.80	\$i8.800
	b) WALL	96.0	CY	450.00	\$43,200
	c) SIDEWALK	65.0	CY	120.00	\$7,800
	d) NEW CONC. ANCHOR BEAM	69.0	CY	450.00	\$31,050
	e) COLUMN @ ANCHOR BEAM	1.0	CY	450.00	\$450
8	16"sq PRESTRESS CONC. PILE	3,140.0	LF	20.00	\$62,800
. 9	3-BULB WATERSTOP(12-ANG)	282.0	L.F	10.00	\$2,820
10	L-TYPE WATERSTOP	109.0	L.F	30.00	\$3,270
11	L-TYPE W-S CRS HARDWARE	109.0	LF	30.00	\$3,270
12	JOINT MATERAL	279.0	SF	2.00	\$558
13	WALL RUSTIFICATION	1,560.0	SF	27.00	\$42,120
14	RELOCATIONS		LS	33,000.00	\$33,000
	\$385 ,0 73				

Item	Description	Quantity	Unit	Unit Price	Amount
29	PHASE I FILMORE AVE. BRIDGE				
1	REMOVE REIN. CONC. DECK	474.0	TONS	300.00	\$142,20
2	REMOVE & SANDBLAST W24X110 DIAPHRAMS PAINT & REPLACE W24X110		LS	15,000.00	\$15,00
3	WELD 7/8"X4" HEADED STUDS	3,150.0	EA	1.25	\$3,93
4	NEW BOLTS & HOLES (A325 1 1/4"DIA X9" W/ANCHORS	140.0	EA	6.50	\$91
5	NON-CONTINUOUS ED L8X8X7/8" (W/2-ANCHOR @ 1'O.C.)	230.0	LF	27.00	\$6,21
6	DECK JOINT L2X2X3/4" (W/ANCHORS @ 1'O.C.)	230.0	LF	12.00	\$2,76
7	REIN. CONC.DECK				
	a) SLAB	144.0	CY	200.00	\$28,80
	b) WALL	132.0	CY	450.00	\$59,40
	c) SIDEWALK	89.0	CY	120.00	\$10,68
	d) NEW CONC. ANCHOR BEAM	64.0	ĊΥ	450.00	\$28,80
	e) COLUMN @ ANCHOR BEAM	1.0	CY	450.00	\$45
8	16"sq PRESTRESS CONC. PILE	3,700.0	LF	20.00	\$74,00
9	3-BULB WATERSTOF(12-ANG)	279.0	LF	10.00	\$2,79
1.0	L-TYPE WATERSTOP	135.0	LF	30.00	\$4,05
11	L-TYPE W-S CRS HARDWARE	135.0	LF	30.00	\$4,05
12	JOINT MATERAL	466.0	SF	2.00	\$93
13	WALL RUSTIFICATION	1,560.0	SF	27.00	\$42,12
14	RELOCATIONS		LS	9,000.00	\$9,00
		·			
		29	•	TOTAL.	\$436,09

	JTFALL CANAL				
Item	Description	Quantity	Unit	Unit Price	Amount
30	PHASE I ROBERT E LEE AVE. BRIDGE	·			
1	REMOVE REIN. CONC. DECK	501.0	TONS	300.00	\$150,300
2	REMOVE & SANDBLAST W24X100 DIAPHRAMS PAINT & REPLACE W24X100		LS	.15,000.00	\$15,000
3	WELD 7/8"X4" HEADED STUDS	4,032.0	EA	1.25	\$5,040
4	NEW BOLTS & HOLES (A325 1 1/4"DIA X9" W/ANCHORS	128.0	EA	6.50	\$832
5	NON-CONTINUOUS ED L8X8X7/8" (W/2-ANCHOR @ 1'O.C.)	460.0	LF	27.00	\$12,420
. 6	DECK JOINT L2X2X3/4" (W/ANCHORS @ 1'O.C.)	460.0	LF	12.00	\$5,520
7	REIN. CONC.DECK				•
	a) DIAPHRAMS	12.0	CY	450.00	\$5,400
	a) SLAB	189.0	CY	200.00	\$37,800
	b) WALL	108.0	CY	450.00	\$48,600
	c) SIDEWALK	102.0	CY	120.00	\$12,240
	d) NEW CONC. ANCHOR BEAM	95.0	- CY	450.00	\$42,750
	e) COLUMN @ ANCHOR BEAM	1.0	CY	450.00	\$450
8	16"sq PRESTRESS CONC. PILE	4,140.0	LF	20.00	\$82,800
9	3-BULB WATERSTOP(12-ANG)	375.0	LF	10.00	\$3,750
10	L-TYPE WATERSTOP	172.0	LF	30.00	\$5,160
11	L-TYPE W-S CRS HARDWARE	172.0	LF	30.00	\$5,160
12	JOINT MATERAL	466.0	SF	, 2.00	\$932
13	WALL RUSTIFICATION	1,560.0	SF	27.00	\$42,120
14	RELOCATIONS		LS	55,600.00	\$55,600
	and the same of th				

.

.

LAKE PONTCHARTRAIN ORLEANS OUTFALL CANAL PHASE I & PHASE II (NOTED BY AN *)

Item	Description	Amount
28	BRIDGE ROLLER GATES	\$729,425
29	OMITTED	
3 Ø	OMITTED	
1	HARRISON AVE. TIE-IN STA. 36+14.85 TO STA. 37+14.85	\$32,483
2	FILMORE AVE. TIE-IN STA. 63+77.7 TO STA. 64+51.7	\$26,982
3	ROBERT E LEE TIE-IN STA. 90+22.25 TO STA. 91+21.25	\$54,307
4	REACH W-6 I-WALL STA. 91+15.16 TO STA. 91+82	\$30,354
5	REACH W-6 I-WALL STA. 91+82 TO STA. 118+87	\$715,36Ø
6	REACH W-7 I-WALL STA. 118+87 TO STA. 124+87	\$215,751
7	REACH E-6 I WALL STA. 91+21.25 TO STA. 91+84.58	\$50,275
8	REACH E-6 I-WALL STA. 91+84.58 TO STA. 118+67	\$96 3,748
9	REACH E-7 I-WALL STA. 118+67 TO STA. 124+67	\$242,822
10	REACH E-7 I-WALL STA. 124+67 TO STA. 128+67	+ \$173,743
11	* REACH E-1 I-WALL STA. 2+42 TO STA. 3+65	\$49,869
12	* REACH E-1 I-WALL STA. 3+65 TO STA. 36+14.85	\$88 3,829
13	* REACH E-2 I-WALL 37+14.85 TO 44+04 & 44+74 TO 50+00	\$425,546
14	* REACH E-3 I-WALL STA. 50+00 TO STA. 63+77.7	\$557,711
15	* REACH E-4 I-WALL STA. 64+51.7 TO STA. 90+22.25	\$1,306,412
1,6	* REACH W-1 I-WALL STA. 2+40 TO STA. 3+62	\$112,317
17	* REACH W-1 I-WALL STA. 3+62 TO 22+80 & 23+40 TO 29+40	\$1,795,254
18	* REACH E-2 T-WALL STA. 44+04 TO STA. 44+74	\$64,119
1.9	* REACH W-1 T-WALL STA. 22+80 TO STA. 23+40	\$107,785
20	* R W-2 T-WALL STA 29+40 - 36+28.35 & 37+00.35 + 50+00	\$4,147 ,959
21	* REACH W-4 T-WALL STA. 50+00 TO SAT. 63+76.76	\$5,404,370
22	* REACH W-5 T-WALL STA. 64+54.7 TO SAT. 90+14.66	\$2,187,785
23	PUMPING STATION T-WALL TIE-IN	\$100,709
	MAY. '88 COST SUBTOTAL	\$20,378,913

LAKE PONTCHARTRAIN ORLEANS OUTFALL CANAL PHASE I & PHASE II (NOTED BY AN *)

Item	Description	Amount
	SUBTOTAL	\$2 0 ,378,913
24	MOB & DEMOB	\$60,000
23	ENVIROMENTAL PROTECTION	\$20,000
26	PUMPING STATION MODIFICATION	\$170,530
27	PUMPING STATION COFFERDAM	\$258,500
31	UTILITY RELOCATIONS :	
	a) 30"DIA. WATERLINE AT STA. 44+50 ; \$5000/SIDE	\$10,000
	b) O.H. POWERLINES AT STA. 4+50,37+20,50+50 ; \$3450 EA.	\$10,000
	SUBTOTAL 25% CONTINGENCIES TOTAL CONSTRUCTION (R) ENGINEERING & DESIGN 12% SUPERVISION & ADMIN. 10%	\$20,907,943 \$5,192,057 \$26,100,000 \$3,100,000 \$2,900,000
- mann, ver. 2 1 2 1 1 1 1 2 2 2	OCT. 87 COST TOTAL COST	\$32,100,00

2 REINF. CONC. a) STEM b) COLUMN 63.0 CY 500.00 \$31,5 c) SLAB 608.0 CY 70.00 \$121,6 d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL BATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 7,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 LF 18.00 \$293,4	1	COST ESTIMATE L	AKE PONTCH	ARTRA:	IN ORLEANS OL	JTFALL CANAL
1 FZ-22 STEEL SHEET PILE 9,262.0 SF 12.50 \$115,7 2 REINF. CONC. a) STEM 191.0 CY 400.00 \$76,4 b) COLUMN 63.0 CY 500.00 \$31,5 c) SLAB 608.0 CY 200.00 \$121,6 d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	Item	Arministra or stranger and the stranger of the		· ·		
2 REINF. CONC. a) STEM b) COLUMN 63.0 CY 500.00 \$31,5 c) SLAB 608.0 CY 70.00 \$121,6 d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 7,50 CY 300.00 \$13,3 c) REINF. CONC. SIDEWALK 4 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		BRIDGE ROLLER GATES	alle a la reconstruire de la constance de la c			
a) STEM b) COLUMN 63.0 CY 500.00 \$76,4 c) SLAB 608.0 CY 200.00 \$121,6 d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 7,0 CY 70.00 \$13,3 612"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	1	PZ-22 STEEL SHEET PILE	9,262.0	SF	12.50	*115,77
b) COLUMN c) SLAB d) STABLIZATION SLAB 77.0 CY 70.00 \$121,6 d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 7,20 CY 300.00 \$831,5 49,3 5 ROAD WORK 4 SUBBASE 668.0 CY 20.00 \$13,3 5 ROAD SURFACE 7,520.0 SF 10.00 \$35,2 6 REINF. CONC. SIDEWALK 27.0 CY 300.00 \$89,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	2	REINF. CONC.				
c) SLAB d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$89,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		a) STEM	191.0	CY	400.00	\$76,4 0
d) STABLIZATION SLAB 77.0 CY 70.00 \$5,3 3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$89,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		b) COLUMN	63.0	CY	500.00	\$31,5 0
3 STEEL GATES 11,600.0 LB 1.50 \$17,4 4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		c) SLAB	608.0	CY	200.00	\$121,60
4 HARDWARE 6,200.0 LB 1.50 \$9,3 5 ROAD WORK a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		d) STABLIZATION SLAB	77.0	CY	70.00	\$5,39
5 ROAD WORK a) SUBBASE b) ROAD SURFACE c) REINF. CONC. SIDEWALK 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	3	STEEL GATES	11,600.0	LB	1.50	\$17,4Ø
a) SUBBASE 668.0 CY 20.00 \$13,3 b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	4	HARDWARE	6,200.0	LB	1.50	\$9,30
b) ROAD SURFACE 3,520.0 SF 10.00 \$35,2 c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1 6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4	5	ROAD WORK				
c) REINF. CONC. SIDEWALK 27.0 CY 300.00 \$8,1		a) SUBBASE	668.Ø	CY	20.00	\$13,36
6 12"sq. PRESTRESS CONC. PILE 16,300.0 LF 18.00 \$293,4		b) ROAD SURFACE	3,520.0	SF	10.00	#35,2 0
		c) REINF. CONC. SIDEWALK	27.0	CY	300.00	\$8,10
7 REMOVE EXISTING RD. SURFACE LS 2,000.00 \$2,0	6	12"sq. PRESTRESS CONC. PILE	16,300.0	LF	18.00	\$293,40
	7	REMOVE EXISTING RD. SURFACE		LS	2,000.00	\$2,00
						·
			·			
						 I

REAL ESTATE COST ESTIMATE LAKE PONTCHARTRAIN AND VICINITY HURRICANE PROTECTION PROJECT ORLEANS PARISH OUTFALL CANAL ORLEANS PARISH, LOUISIANA

ESTIMATE OF COSTS (Date of Value June 1988)

	•			
(a)	Lands & Damages	Acres	Unit Value	Total Value
	Perpetual Levee Right-of-Way Recreational Land Potential Residential	13.18 2.67	\$435,600 653,400	\$5,741,208 1,744,578
	Improvements			0
	Severance Damage		•	0
	Total (R)			\$7,486,000
(b)	Contingencies 25% (R)			1,872,000
(c)	Acquisition Costs (Estimated 3	tracts)		
	Non-Federal 3 @ \$1,400 per t	ract		4,000
	Federal			5,000
(d)	PL 91-646			0
(e)	Total Estimated Real Estate Cos	t		\$9,367,000

This estimate is based on maps and acreage calculations as provided by CELMN-ED-SP.

Appraiser 16 June 1988

APPROVED BY:

JOSEPH W. KOPEC Review Appraiser 16 June 1988

June 88

	COST ESTIMATE	ORLEANS AVE	E. OU	T. CANAL-SECT	OR GATES
tem	Description	Quantity	Unit	Unit Price	Amount
A	***CONTROL STRUCTURE***				
	Embankment-semicompacted	3,000.0	CY	13.00	\$39,000
	Structural Excavation	1,250.0	CY	9.00	\$11,250
	Structural Backfill	625.0	CY	13.00	\$8,125
	PMA-22 Steel Sheet piling (128' X 15')	9,200.0	SF	10.00	\$92,000
	HP 14X73 Steel H Piles	13,280.0	LF	24.00	\$318,720
	Concrete Stab. Slab. 4"	69.0	CY	100.00	\$6,900
	Reinf. Concrete, Base Slab	5,550.0	CY	200.00	\$1,110,000
	Wall	4,400.0	CY	350.00	\$1,540,000
i	Needle Girder and Support	LS	LS	80,000.00	\$80,000
	Concrete Needles	LS	LS	180,000.00	\$180,000
	SUSTOTAL-CONTROL STRUCTURE				\$3,385,99
		1			
В	*STEEL SECTOR GATES (4)* Structural Steel	379,800.0	LB	1.50	\$569,70
	Electrical	LS	LS	1	\$300.000
	Mechanical	LS	LS		\$300,000
	Control Youses	LS	LS		\$100,000
	SUBTOTAL-BUTTERFLY GATES .				\$1,269,70
	APPROACH GUIDEWALLS		·		
٠.,١	FZ-35 Steel Sheet Piling 200' X 40'	8,000.0	SF	16.50	\$132,000
	Concrete Cap, 21 X 61	90.0	, CY	350.00	331,500
	THE SECOND SECOND CONTROL COME THE CONTROL COME COME COME COME COME COME COME COME	-			· · · · · · · · · · · · · · · · · · ·
	SUBTOTAL-APPROACH GUIDEWALL				\$163,50
,					Three sheld sport their brief work work to be troop town or well to
T					
D	***EROSION PROTECTION***	1,00	1 mar	10000	where enem
	Shell, 6" Thick	160.0 975.0			\$2,88 *10.50
	Riprap, 12"	3/0.0	TON	20.00	\$19,50
	SUSTOTAL EROSION PROTECTION				\$22,38
	the fact of the first time to the first time of the fact of the fa				
		,			
	PAGE 1 JUNE'88 COST	SUBTOTAL-A	+B+C+)	D	\$4,841,57

	COST ESTIMATE	ORLEANS AVE	E. OUT	r. CANAL-SECT	OR GATES
Item	Description	Quantity	Unit	Unit Price	Amount
ļ	***COFFERDAM***				
	Pz-27 Steel Sheet Piling 51' X 880'	44,880.0	SF	12.50	\$561,000
	14" Steel H-Piling(HP14X73) 90 X 160'	14,400.0	LF	24.00	\$345, 6 00
	18" Waler, W18X76 Removal of Cofferdam	880.0 LS	LF LS	35.00 150,000.00	\$30,800 \$150,000
	Dewatering	LS	LS		\$465,400
	Pile Test	. 2	EA	20,000.00	\$40,000
	SUBTOTAL-COFFERDAM		 		\$1,592,8 00
	The state that the time can appear the state that the state that the state of the s				
F	***CHANNEL CLOSURE***			10.00	ana mena deservicios
	Shell Fill, 180' X 54 P2-35 Steel Sheet Piling	9,720.0 6,940.0	CY SF	18.00 16.50	
	2071 X 33%51		5.4		* 5 = 1 = 200 0
	Concrete Cap, 2'X 9'X 207' Riprap(Lakeside only)	138.0	§	1	\$48,300 \$9,200
	SUBTOTAL-CHANNEL CLOUSURE				\$ 346,970
			į. 		*
6	***CHANNEL EXCAVATION***	36,000.0	CY	9.00	\$324,000
!-!	**CHANNEL RETAINING WALL**		ļ		
	FZ-35 Steel Sheet Piling Wall Removal	35,000.0 LS	S.F.	2	•
	Structural Steel(Tie-Back System, Furnish-Install Remove)	63,600,0			1
	Slavage Sheet Piling	598.0	TON	-40.00	\$-23 , 920
	Salvage Misc. Steel	32.0	TON	-25.00	\$-800
	SUBTOTAL-RETAINING, WALL				\$716,380
	The state and the same that were the same and the same same same same same same same sam				
1	***LEVEE AND FLOODWALL***				
	PSA-23 Steel Sheet Filing	480.0	ŀ	l	\$7,680 \$44,055
	PZ-35 Steel Sheet Piling PZ-27 Steel Sheet Piling	2,670.0 69,600.0		i .	\$870,000
	Semi-compacted Fill	3,200.0	1	13.00	\$41,600
	Fully-compacted Fill	600.0	• .	1	
	Sand Fill	800.0	1		
	Concrete Cap	2,300.0		•	1 '
	Clearing and Grubbing Fertilizing and Seeding	8.0		1 5	\$1,600 \$4,000
	nio nan aliar din daja lang alian dang anno nan daga dang ing nan dan dan lang anno dan lang anno dan				
	SUBTOTAL-LEVEE & FLOODWALL				\$1,796,335
ļ				11.7	And Transcription
}	PAGE 2 JUNE 188 COST	SUBTOTAL-E	+-+5+	F1+ 1	\$4,776,485

	COST ESTIMATE	ORLEANS AVE	E. OU	T. CANAL-SEC	TOR GATES .
Item	Description	Quantity	Unit	Unit Price	Amount
J	**ENVIROMENTAL PROTECTION**	LS	LS	5,000.00	\$5,00
Κ	***MOB & DEMOB***	LS	LS	50,000.00	\$50,00
	SUBTOTAL CONSTRUCTION COST		,		\$9,67 3,06
	CONTINGENCIES 25 % ±				\$2,418,26
	TOTAL CONSTRUCTION COST				\$12,091,32
	E & D 12% ± SUBTOTAL				\$1,450,95 \$13,542,28
	S & A 10% ± SUBTOTAL				\$1,354,22 \$14,896,51
	**************************************				*********** \$14,900,00
			·		
	PAGE 3 JUNE'88 COST	·			

June 8.8

cem	Description	Quantity	Unit	Unit Price	Amount
A	***CONTROL STRUCTURE***				
	Embankment-semicompacted.	3,000.0	CY	13.00	\$39,00
	Structural Excavation	26,000.0	CY	9.00	\$234,00
	Structural Backfill	720.0	CY		\$9,36
	PMA-22 Steel Sheet piling (128' X 15')	1,920.0	SF	10.00	\$1 9,20
	14" X 14" Concrete Piling (444 X 50')	22,200.0	LF	20.00	\$444 _{.00}
	Concrete Stab. Slab, 4"	51.0	CY	100.00	\$5,10
	Reinf. Concrete, Base Slab	529.0	CY	200.00	
	Wall	678.0	CY	350.00	\$237,30
	Machinery House	275.0) ;	\$110,00
	Needle Girder and Support	LS	LS	,	\$20,00
	Concrete Needles	LS	LS		
ļ	were made agent and dead to the sales three place and made made the Thomas Made and their made that made three date agent			00,000,00	+ C3 C2 g C2 C2
	SUBTOTAL-CONTROL STRUCTURE				\$1,283,76
В	*VERTICAL LIFT GATES (4)*				
į	Structural Steel	110,000.0	LB	1.50	\$165,00
i	Electrical	LS	LS	300,000.00	\$300,00
	Mechanical	LS	LS	300,000.00	
	SUBTOTAL-VERTICAL LIFT GATE				\$765,00
1			: .		
С	***CONCRETE APRONS***				
į	12" Dia., Untreated Timber Piles, 220 X 25'	5,500.0	LF	9.00	\$49,50
	PMA-22 Steel Sheet Piling 256′ X 12′	3,072.0	SF	10.00	\$30,72
	Concrete Stab. Slab, 4"	80.0	CY	100.00	\$8,00
	Reinf. Concrete, Base Slab	600.0	,	200.60	
	Walls	228.0		350.00	\$79,80
	***************************************	alia alia hai u tu tu tu	,	000.00	47 / 100
	SUBTOTAL-CONCRETE APRONS				de CO CO CO
	TOTAL CONCRETE HERONS			"	\$288,02
ע	***APPROACH GUIDEWALLS*** PZ-35 Steel Sheet Filing 200' X 40'	8,000.0	SF	16.50	\$132,00
	Concrete Cap, 2' X 6'	90.0	CY	350.00	\$31,50
		70780		330.00	was a self
	SUBTOTAL-APPROACH GUIDEWALL				73 TATE.
					\$163,50
					l
	PAGE 1 JUNE'88 COST	SUBTOTAL-A			\$2,500,28

	COST ESTIMATE ORLEANS A	AVE. OUT. CA	ANAL-	VERTICAL LIFT	GATES
Item	Description	Quantity	Unit	Unit Price	Amount
E	***EROSION PROTECTION*** Shell, 6" Thick Riprap, 12"	50.0 150.0	CY		\$900 \$3,000
1	SUBTOTAL-EROSION PROTECTION			÷	\$3,900
F	***COFFERDAM*** Fz-27 Steel Sheet Piling 51' X 590'	30,090.0	SF	12.50	\$376,125
	14" Steel H-Piling(HP14X73) 60 X 160'	9,600.0	LF	24.00	\$230,400
	18" Waler, W18X76 Removal of Cofferdam Dewatering Pile Test	590.0 LS LS	LF LS LS EA	300,000.00	\$20,650 \$100,000 \$300,000 \$40,000
	SUBTOTAL-COFFERDAM .				\$1,067,175
G	***CHANNEL CLOSURE*** Shell Fill, 180' X 54 PZ-35 Steel Sheet Piling 207' X 33.5' Concrete Cap, 2'X 9'X 207' Kiprap(Lakeside only)	9,720.0 6,940.0 138.0 460.0	SF CY	16.50 350.00	\$114,510
	SUBTOTAL-CHANNEL CLOUSURE				\$346,770
Н	***CHANNEL EXCAVATION***	30,000.0	CY	9.00	\$2 7 0,000
I	***LEVEE AND FLOODWALL*** PSA-23 Steel Sheet Piling PZ-35 Steel Sheet Piling PZ-27 Steel Sheet Piling Semi-compacted Fill Fully-compacted Fill Sand Fill Concrete Cap Clearing and Grubbing Fertilizing and Seeding SUBTOTAL-LEVEE & FLOODWALL	480.0 2,670.0 69,600.0 3,200.0 600.0 800.0 2,300.0 8.0	SF SFYYYY CCAA		\$7,680 \$44,055 \$870,000 \$41,600 \$9,600 \$12,800 \$805,000 \$1,600 \$4,000
	PAGE 2 JUNE'88 COST	SUBTOTAL-E-	ŀF+G+i		\$3,484,380

					GATES
Item	Description	Quantity	Unit	Unit Price	Amount
J	**ENVIROMENTAL PROTECTION**	LS	LS	5,000.00	\$5,00
K	***MOB & DEMOB***	ĻS	LS	50,000.00	\$50,00
			[
	SUBTOTAL CONSTRUCTION COST				\$6,039,66
	CONTINGENCIES 25 % ±				\$1,509,91
	TOTAL CONSTRUCTION COST		ļ :	·	\$7,549,57
	E & D 12% ± SUBTOTAL				\$905,94 \$8,455,52
	S & A 10% E SUBTOTAL				\$845,55 \$9,301.07
				•	
	**************************************				********** \$9,300,00
) · · · · · · · · · · · · · · · · · · ·			
					. :
	. •				